Affiliations 

  • 1 Centre for Sustainable Process Technology, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; Energy and Environment Unit, Engineering and Processing Research Division, Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
  • 2 Energy and Environment Unit, Engineering and Processing Research Division, Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
  • 3 Centre for Sustainable Process Technology, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
  • 4 Centre for Sustainable Process Technology, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; Chemical Engineering Programme, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
  • 5 Centre for Sustainable Process Technology, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; Chemical Engineering Programme, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia. Electronic address: jamal@ukm.edu.my
Bioresour Technol, 2019 Dec;293:122085.
PMID: 31499328 DOI: 10.1016/j.biortech.2019.122085

Abstract

In this study, the potential of oil palm trunk (OPT) sap as a sole substrate for succinic acid (SA) production was evaluated using Actinobacillus succinogenes 130Z. After OPT sap was characterised, the effects of adding carbonate, yeast extract (YE) and minerals to this medium were investigated in an attempt to develop a low-cost fermentation medium. The OPT sap alone, gave comparable SA yield and productivity (0.54 g/g and 0.35 g/L/h) to those supplemented with YE (0.50 g/g and 0.36 g/L/h) and minerals (0.55 g/g and 0.40 g/L/h). The findings showed that OPT sap has sufficient amount of nutrients for SA biosynthesis by A. succinogenes 130Z and could potentially reduce cost without requiring expensive nutrients supplementation.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.