RESULT: Images of four monogenean species namely Sinodiplectanotrema malayanus, Trianchoratus pahangensis, Metahaliotrema mizellei and Metahaliotrema sp. (undescribed) were used to develop an automated technique for identification. K-nearest neighbour (KNN) was applied to classify the monogenean specimens based on the extracted features. 50% of the dataset was used for training and the other 50% was used as testing for system evaluation. Our approach demonstrated overall classification accuracy of 90%. In this study Leave One Out (LOO) cross validation is used for validation of our system and the accuracy is 91.25%.
CONCLUSIONS: The methods presented in this study facilitate fast and accurate fully automated classification of monogeneans at the species level. In future studies more classes will be included in the model, the time to capture the monogenean images will be reduced and improvements in extraction and selection of features will be implemented.
METHODS: In this study a novel system named Ceph-X is developed to computerize the manual tasks of orthodontics during cephalometric measurements. Ceph-X is developed by using image processing techniques with three main models: enhancements X-ray image model, locating landmark model, and computation model. Ceph-X was then evaluated by using X-ray images of 30 subjects (male and female) obtained from University of Malaya hospital. Three orthodontics specialists were involved in the evaluation of accuracy to avoid intra examiner error, and performance for Ceph-X, and 20 orthodontics specialists were involved in the evaluation of the usability, and user satisfaction for Ceph-X by using the SUS approach.
RESULTS: Statistical analysis for the comparison between the manual and automatic cephalometric approaches showed that Ceph-X achieved a great accuracy approximately 96.6%, with an acceptable errors variation approximately less than 0.5 mm, and 1°. Results showed that Ceph-X increased the specialist performance, and minimized the processing time to obtain cephalometric measurements of human skull. Furthermore, SUS analysis approach showed that Ceph-X has an excellent usability user's feedback.
CONCLUSIONS: The Ceph-X has proved its reliability, performance, and usability to be used by orthodontists for the analysis, diagnosis, and treatment of cephalometric.
RESULTS: At present, the classifier used has achieved an accuracy of 100% based on skulls' views. Classification and identification to regions and sexes have also attained 72.5%, 87.5% and 80.0% of accuracy for dorsal, lateral, and jaw views, respectively. This results show that the shape characteristic features used are substantial because they can differentiate the specimens based on regions and sexes up to the accuracy of 80% and above. Finally, an application was developed and can be used for the scientific community.
CONCLUSIONS: This automated system demonstrates the practicability of using computer-assisted systems in providing interesting alternative approach for quick and easy identification of unknown species.
METHODS: Eight scientific databases are selected as an appropriate database and Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) method was employed as the basis method for conducting this systematic and meta-analysis review. Regarding the main objective of this research, some inclusion and exclusion criteria were considered to limit our investigation. To achieve a structured meta-analysis, all eligible articles were classified based on authors, publication year, journals or conferences, applied fuzzy methods, main objectives of the research, problems and research gaps, tools utilized to model the fuzzy system, medical disciplines, sample sizes, the inputs and outputs of the system, findings, results and finally the impact of applied fuzzy methods to improve diagnosis. Then, we analyzed the results obtained from these classifications to indicate the effect of fuzzy methods in decreasing the complexity of diagnosis.
RESULTS: Consequently, the result of this study approved the effectiveness of applying different fuzzy methods in diseases diagnosis process, presenting new insights for researchers about what kind of diseases which have been more focused. This will help to determine the diagnostic aspects of medical disciplines that are being neglected.
CONCLUSIONS: Overall, this systematic review provides an appropriate platform for further research by identifying the research needs in the domain of disease diagnosis.
METHOD: In this study, we implement FWF as an energy minimization function to replace the standard gradient-descent method as minimization function in Chan-Vese segmentation technique. The proposed FWF is used to find the boundaries of an object by controlling the inside and outside values of the contour. In this study, the objective evaluation is used to distinguish the differences between the processed segmented images and ground truth using a set of statistical parameters; true positive, true negative, false positive, and false negative.
RESULTS: The FWF as a minimization of energy was successfully implemented on BRATS 2013 image dataset. The achieved overall average sensitivity score of the brain tumors segmentation was 94.8 ± 4.7%.
CONCLUSIONS: The results demonstrate that the proposed FWF method minimized the energy function more than the gradient-decent method that was used in the original three-dimensional active contour without edge (3DACWE) method.
METHODS: CFAE from several atrial sites, recorded for a duration of 16 s, were acquired from 10 patients with persistent and 9 patients with paroxysmal AF. These signals were appraised using non-overlapping windows of 1-, 2- and 4-s durations. The resulting data sets were analyzed with Recurrence Plots (RP) and Recurrence Quantification Analysis (RQA). The data was also quantified via entropy measures.
RESULTS: RQA exhibited unique plots for persistent versus paroxysmal AF. Similar patterns were observed to be repeated throughout the RPs. Trends were consistent for signal segments of 1 and 2 s as well as 4 s in duration. This was suggestive that the underlying signal generation process is also repetitive, and that repetitiveness can be detected even in 1-s sequences. The results also showed that most entropy metrics exhibited higher measurement values (closer to equilibrium) for persistent AF data. It was also found that Determinism (DET), Trapping Time (TT), and Modified Multiscale Entropy (MMSE), extracted from signals that were acquired from locations at the posterior atrial free wall, are highly discriminative of persistent versus paroxysmal AF data.
CONCLUSIONS: Short data sequences are sufficient to provide information to discern persistent versus paroxysmal AF data with a significant difference, and can be useful to detect repeating patterns of atrial activation.
Material and Methods: In this study, we have introduced a new technique to reduce the motion artifacts, based on data binning and low rank plus sparse (L+S) reconstruction method for DCE MRI. For Data binning, radial k-space data is acquired continuously using the golden-angle radial sampling pattern and grouped into various motion states or bins. The respiratory signal for binning is extracted directly from radially acquired k-space data. A compressed sensing- (CS-) based L+S matrix decomposition model is then used to reconstruct motion sorted DCE MR images. Undersampled free breathing 3D liver and abdominal DCE MR data sets are used to validate the proposed technique.
Results: The performance of the technique is compared with conventional L+S decomposition qualitatively along with the image sharpness and structural similarity index. Recovered images are visually sharper and have better similarity with reference images.
Conclusion: L+S decomposition provides improved MR images with data binning as preprocessing step in free breathing scenario. Data binning resolves the respiratory motion by dividing different respiratory positions in multiple bins. It also differentiates the respiratory motion and contrast agent (CA) variations. MR images recovered for each bin are better as compared to the method without data binning.
MATERIALS AND METHODS: Two hundred retinal samples of right eye [57.0% females (n = 114) and 43.0% males (n = 86)] were selected from baseline visit. A custom-written software was used for vessel segmentation. Vessel segmentation is the process of transforming two-dimensional color images into binary images (i.e. black and white pixels). The circular area of approximately 2.6 optic disc radii surrounding the center of optic disc was cropped. The non-vessels fragments were removed. FracLac was used to measure the fractal dimension and vessel density of retinal vessels.
RESULTS: This study suggested that 14.1% of the region of interest (i.e. approximately 2.6 optic disk radii) comprised retinal vessel structure. Using correlation analysis, vessel density measurement and fractal dimension estimation are linearly and strongly correlated (R = 0.942, R(2) = 0.89, p