Displaying publications 81 - 92 of 92 in total

Abstract:
Sort:
  1. Ali SS, Mohamed SFA, Rozalei NH, Boon YW, Zainalabidin S
    Cardiovasc Toxicol, 2019 02;19(1):72-81.
    PMID: 30128816 DOI: 10.1007/s12012-018-9478-7
    Heart failure-associated morbidity and mortality is largely attributable to extensive and unregulated cardiac remodelling. Roselle (Hibiscus sabdariffa) calyces are enriched with natural polyphenols known for antioxidant and anti-hypertensive effects, yet its effects on early cardiac remodelling in post myocardial infarction (MI) setting are still unclear. Thus, the aim of this study was to investigate the actions of roselle extract on cardiac remodelling in rat model of MI. Male Wistar rats (200-300 g) were randomly allotted into three groups: Control, MI, and MI + Roselle. MI was induced with isoprenaline (ISO) (85 mg/kg, s.c) for two consecutive days followed by roselle treatment (100 mg/kg, orally) for 7 days. Isoprenaline administration showed changes in heart weight to body weight (HW/BW) ratio. MI was especially evident by the elevated cardiac injury marker, troponin-T, and histological observation. Upregulation of plasma levels and cardiac gene expression levels of inflammatory cytokines such as interleukin (IL)-6 and IL-10 was seen in MI rats. A relatively high percentage of fibrosis was observed in rat heart tissues with over-expression of collagen (Col)-1 and Col-3 genes following isoprenaline-induced MI. On top of that, cardiomyocyte areas were larger in heart tissues of MI rats with upregulation of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) gene expression, indicating cardiac hypertrophy. Interestingly, roselle supplementation attenuated elevation of plasma troponin-T, IL-6, IL10, and gene expression level of IL-10. Furthermore, reduction of cardiac fibrosis and hypertrophy were observed. In conclusion, roselle treatment was able to limit early cardiac remodelling in MI rat model by alleviating inflammation, fibrosis, and hypertrophy; hence, the potential application of roselle in early adjunctive treatment to prevent heart failure.
    Matched MeSH terms: Interleukin-10
  2. Vântu A, Ghertescu D, Fiscă C, Mărginean A, Hutanu A, Gheban D, et al.
    Malays J Pathol, 2019 Apr;41(1):25-32.
    PMID: 31025634
    INTRODUCTION: Experimental models are essential for clarifying the pathogenesis of atherosclerosis in the context of diabetes mellitus (DM). We aimed to evaluate the presence and the magnitude of several factors known to promote atherogenesis, and to assess the potential of a pro-atherogenic environment to stimulate the development of atherosclerotic lesions in a rat model of long-term type 1 DM.

    MATERIALS AND METHODS: Six control and five DM Wistar rats were evaluated. DM was induced at 11 weeks of age using streptozotocin (STZ; 60 mg/kg, intraperitoneal). Animals were monitored up to 38 weeks of age, when plasma glucose, lipid profile, and markers specific for systemic inflammation, endothelial dysfunction, and oxidative stress were measured. The amount of fat within the aortic wall was assessed semiquantitatively using Oil Red O staining.

    RESULTS: Diabetic rats presented significantly higher plasma glucose (p < 0.001), total cholesterol and triglycerides (both p = 0.02), high-sensitivity C-reactive protein (p = 0.01), and vascular endothelial growth factor (p = 0.04) levels, and significantly lower interleukin-10 (p = 0.04), superoxide dismutase (p < 0.01), and glutathione peroxidase (p = 0.01) levels than the control rats. Mild (grade 1) atherosclerotic lesions were observed in the aortic wall of 80% of the diabetic rats and in none of the control rats.

    CONCLUSIONS: This study presents a STZ-induced type 1 DM rat model with one of the longest follow-ups in the literature. In this model, long-term DM created a highly pro-atherogenic environment characterised by hyperglycemia, dyslipidemia, systemic inflammation, endothelial dysfunction, and oxidative stress that resulted in the development of early aortic atherosclerotic lesions.

    Matched MeSH terms: Interleukin-10
  3. Madzuki IN, Lau SF, Abdullah R, Mohd Ishak NI, Mohamed S
    Phytother Res, 2019 Jul;33(7):1784-1793.
    PMID: 31033070 DOI: 10.1002/ptr.6366
    Vernonia amygdalina (VA) is a medicinal tropical herb for diabetes and malaria and believed to be beneficial for joint pains. The antiosteorthritis effects of VA leaf in cartilage explant assays and on postmenopausal osteoarthritis (OA) rat model were investigated. The VA reduced the proteoglycan and nitric oxide release from the cartilage explants with interleukin 1β (IL-1β) stimulation. For the preclinical investigation, ovariectomized (OVX) female rats were grouped (n = 8) into nontreated OA, OA + diclofenac (5 mg/kg), OA + VA extract (150 and 300 mg/kg), and healthy sham control. Monosodium iodoacetate was injected into the knee joints to accelerate OA development. After 8 weeks, the macroscopic, microscopic, and histological images showed that the OA rats treated with VA 300 mg/kg and diclofenac had significantly reduced cartilage erosions and osteophytes unlike the control OA rats. The extract significantly down-regulated the inflammatory prostaglandin E2, nuclear factor κβ, IL-1β, ADAMTS-5, collagen type 10α1, and caspase3 in the OVX-OA rats. It up-regulated the anti-inflammatory IL-10 and collagen type 2α1 mRNA expressions, besides reducing serum collagenases (MMP-3 and MMP-13) and collagen type II degradation biomarker (CTX-II) levels in these rats. The VA (containing various caffeoyl-quinic acids, flavanone-O-rutinoside, luteolin, apigenin derivative and vernonioside D) suppressed inflammation, pain, collagenases as well as cartilage degradation, and improved cartilage matrix synthesis to prevent OA.
    Matched MeSH terms: Interleukin-10
  4. Lew MH, Norazmi MN, Tye GJ
    Mol Immunol, 2020 Jan;117:54-64.
    PMID: 31739193 DOI: 10.1016/j.molimm.2019.10.023
    Tuberculosis (TB) is one of the deadliest human diseases worldwide caused by mycobacterial infection in the lung. Bacillus Calmette-Guerin (BCG) vaccine protects against disseminated TB in children, but its effectiveness is still questionable due to highly variable protections in adolescence and elderly individuals. Targeting the latency M.tb antigen is a recent therapeutic approach to eradicate dormant pathogen that could possibly lead to disease activation. In this study, we aimed to potentiate immune responses elicited against 16 kDa α-crystalline (HspX) tuberculosis latency antigen by incorporation of Combined Adjuvant for Synergistic Activation of Cellular immunity (CASAC). Histidine-tagged recombinant HspX protein was initially produced in Escherichia coli and purified using Ni-NTA chromatography. To evaluate its adjuvanticity, C57BL/6 mice (n = 5) were initially primed and intradermally immunised in 2-weeks interval for 4 rounds with recombinant HspX, formulated with and without CASAC. Humoral and cell-mediated immune responses elicited against HspX antigen were evaluated using ELISA and Flow Cytometry. Our findings showed that CASAC improved humoral immunity with increased antigen-specific IgG1 and IgG2a antibody response. Stronger CD8+ and Th1-driven immunity was induced by CASAC formulation as supported by elevated level of IFN-γ, TNF-α, IL-12 and IL-17A; and with low IL-10 secretion. Interestingly, adjuvanted HspX vaccine triggered a higher percentage of effector memory T-cell population than those immunised with unadjuvanted vaccine. In conclusion, CASAC adjuvant has great potential to enhance immunogenicity elicited against HspX antigen, which could be an alternative regimen to improve the efficacy of future therapeutic vaccine against Mycobacterium tuberculosis.
    Matched MeSH terms: Interleukin-10
  5. Tan WS, Arulselvan P, Karthivashan G, Fakurazi S
    Mediators Inflamm, 2015;2015:720171.
    PMID: 26609199 DOI: 10.1155/2015/720171
    Aim of Study. Moringa oleifera Lam. (M. oleifera) possess highest concentration of antioxidant bioactive compounds and is anticipated to be used as an alternative medicine for inflammation. In the present study, we investigated the anti-inflammatory activity of 80% hydroethanolic extract of M. oleifera flower on proinflammatory mediators and cytokines produced in lipopolysaccharide- (LPS-) induced RAW 264.7 macrophages. Materials and Methods. Cell cytotoxicity was conducted by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Nitric oxide (NO) production was quantified through Griess reaction while proinflammatory cytokines and other key inflammatory markers were assessed through enzyme-linked immunosorbent assay (ELISA) and immunoblotting. Results. Hydroethanolic extract of M. oleifera flower significantly suppressed the secretion and expression of NO, prostaglandin E2 (PGE2), interleukin- (IL-) 6, IL-1β, tumor necrosis factor-alpha (TNF-α), nuclear factor-kappa B (NF-κB), inducible NO synthase (iNOS), and cyclooxygenase-2 (COX-2). However, it significantly increased the production of IL-10 and IκB-α (inhibitor of κB) in a concentration dependent manner (100 μg/mL and 200 μg/mL). Conclusion. These results suggest that 80% hydroethanolic extract of M. oleifera flower has anti-inflammatory action related to its inhibition of NO, PGE2, proinflammatory cytokines, and inflammatory mediator's production in LPS-stimulated macrophages through preventing degradation of IκB-α in NF-κB signaling pathway.
    Matched MeSH terms: Interleukin-10
  6. Kharaeva ZF, Zhanimova LR, Mustafaev MSh, De Luca C, Mayer W, Chung Sheun Thai J, et al.
    Mediators Inflamm, 2016;2016:9379840.
    PMID: 26977121 DOI: 10.1155/2016/9379840
    The clinical efficacy of topical administration of standardised fermented papaya gel (SFPG), known to have antioxidant and anti-inflammatory properties, versus conventional therapy was evaluated in a group of 84 patients with moderate-to-severe periodontitis, randomly assigned to control group (n = 45) undergoing traditional pharmacologic/surgical protocols or to experimental group (n = 39), additionally treated with intragingival pocket SFPG (7 g) applications (15 min daily for 10 days). Patients undergoing SFPG treatment showed significant (P < 0.05), durable improvement of three major clinical indices of disease severity: reduced bleeding (day 7), plaque and gingival conditions (day 14), and consistent gingival pocket depth reduction (day 45). Proinflammatory nitric oxide metabolites reached normal values in plasma (day 14) and gingival crevicular fluid (GCF) at day 45 with SFPG applications compared to controls that did not reach normalisation. Levels of highly increased proinflammatory (IL-1B, IL-6) and suppressed anti-inflammatory (IL-10) cytokines normalised in the SFPG group by days 14 (plasma) and 45 (GCF), but never in the control group. Although not acting directly as antibiotic, SFPG acted in synergy with human granulocytes blocking adaptive catalase induction in S. aureus in response to granulocyte-derived oxidative stress, thus enhancing intracellular bacterial killing.
    Matched MeSH terms: Interleukin-10
  7. Sarkar S, Leo BF, Carranza C, Chen S, Rivas-Santiago C, Porter AE, et al.
    PLoS One, 2015;10(11):e0143077.
    PMID: 26580078 DOI: 10.1371/journal.pone.0143077
    Exposure to silver nanoparticles (AgNP) used in consumer products carries potential health risks including increased susceptibility to infectious pathogens. Systematic assessments of antimicrobial macrophage immune responses in the context of AgNP exposure are important because uptake of AgNP by macrophages may lead to alterations of innate immune cell functions. In this study we examined the effects of exposure to AgNP with different particle sizes (20 and 110 nm diameters) and surface chemistry (citrate or polyvinlypyrrolidone capping) on cellular toxicity and innate immune responses against Mycobacterium tuberculosis (M.tb) by human monocyte-derived macrophages (MDM). Exposures of MDM to AgNP significantly reduced cellular viability, increased IL8 and decreased IL10 mRNA expression. Exposure of M.tb-infected MDM to AgNP suppressed M.tb-induced expression of IL1B, IL10, and TNFA mRNA. Furthermore, M.tb-induced IL-1β, a cytokine critical for host resistance to M.tb, was inhibited by AgNP but not by carbon black particles indicating that the observed immunosuppressive effects of AgNP are particle specific. Suppressive effects of AgNP on the M.tb-induced host immune responses were in part due to AgNP-mediated interferences with the TLR signaling pathways that culminate in the activation of the transcription factor NF-κB. AgNP exposure suppressed M.tb-induced expression of a subset of NF-κB mediated genes (CSF2, CSF3, IFNG, IL1A, IL1B, IL6, IL10, TNFA, NFKB1A). In addition, AgNP exposure increased the expression of HSPA1A mRNA and the corresponding stress-induced Hsp72 protein. Up-regulation of Hsp72 by AgNP can suppress M.tb-induced NF-κB activation and host immune responses. The observed ability of AgNP to modulate infectious pathogen-induced immune responses has important public health implications.
    Matched MeSH terms: Interleukin-10/genetics; Interleukin-10/immunology
  8. Hong CY, Wong NK, Abdullah M
    Asian Pac J Allergy Immunol, 2015 Mar;33(1):26-32.
    PMID: 25840631 DOI: 10.12932/AP0463.33.1.2015
    Tamm-Horsfall glycoprotein (THP) and uromodulin are the most abundant glycoproteins in non-pregnant women's/men's and pregnant women's urine, respectively. However, the bioactivities of these glycoproteins are still unclear.
    Matched MeSH terms: Interleukin-10/biosynthesis; Interleukin-10/secretion
  9. Gunter NV, Teh SS, Lim YM, Mah SH
    Front Pharmacol, 2020;11:594202.
    PMID: 33424605 DOI: 10.3389/fphar.2020.594202
    The pathogenesis of skin inflammatory diseases such as atopic dermatitis, acne, psoriasis, and skin cancers generally involve the generation of oxidative stress and chronic inflammation. Exposure of the skin to external aggressors such as ultraviolet (UV) radiation and xenobiotics induces the generation of reactive oxygen species (ROS) which subsequently activates immune responses and causes immunological aberrations. Hence, antioxidant and anti-inflammatory agents were considered to be potential compounds to treat skin inflammatory diseases. A prime example of such compounds is xanthone (xanthene-9-one), a class of natural compounds that possess a wide range of biological activities including antioxidant, anti-inflammatory, antimicrobial, cytotoxic, and chemotherapeutic effects. Many studies reported various mechanisms of action by xanthones for the treatment of skin inflammatory diseases. These mechanisms of action commonly involve the modulation of various pro-inflammatory cytokines such as interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor α (TNF-α), as well as anti-inflammatory cytokines such as IL-10. Other mechanisms of action include the regulation of NF-κB and MAPK signaling pathways, besides immune cell recruitment via modulation of chemokines, activation, and infiltration. Moreover, disease-specific activity contributed by xanthones, such as antibacterial action against Propionibacterium acnes and Staphylococcus epidermidis for acne treatment, and numerous cytotoxic mechanisms involving pro-apoptotic and anti-metastatic effects for skin cancer treatment have been extensively elucidated. Furthermore, xanthones have been reported to modulate pathways responsible for mediating oxidative stress and inflammation such as PPAR, nuclear factor erythroid 2-related factor and prostaglandin cascades. These pathways were also implicated in skin inflammatory diseases. Xanthones including the prenylated α-mangostin (2) and γ-mangostin (3), glucosylated mangiferin (4) and the caged xanthone gambogic acid (8) are potential lead compounds to be further developed into pharmaceutical agents for the treatment of skin inflammatory diseases. Future studies on the structure-activity relationships, molecular mechanisms, and applications of xanthones for the treatment of skin inflammatory diseases are thus highly recommended.
    Matched MeSH terms: Interleukin-10
  10. Sangaran PG, Ibrahim ZA, Chik Z, Mohamed Z, Ahmadiani A
    Front Cell Neurosci, 2020;14:598453.
    PMID: 33551748 DOI: 10.3389/fncel.2020.598453
    Lipopolysacharide (LPS) pre-conditioning (PC), has been shown to exert protective effects against cytotoxic effects. Therefore, we hypothesized, the tolerance produced by LPS PC will be resulted by the alterations and modifications in gene and protein expression. With reference to the results of MTT assays, AO/PI staining, and Annexin V-FITC analyses of LPS concentration (0.7815-50 μg/mL) and time-dependent (12-72 h) experiments, the pre-exposure to 3 μg/mL LPS for 12 h protected the differentiated PC12 cells against 0.75 mg/mL LPS apoptotic concentration. LPS-treated cells secreted more inflammatory cytokines like IL-1α, IL-1β, IL-2, IL-3, IL-4, IL-6, IL-17, IFN-γ, and TNF-α than LPS-PC cells. The production of inflammatory mediators ROS and NO was also higher in the LPS-induced cells compared to LPS-PC cells. Conversely, anti-inflammatory cytokines (like IL-10, IL-13, CNTF, and IL-1Ra) were upregulated in the LPS-PC cells but not in the LPS-induced cells. Meanwhile, the LPS initiated caspase-8 which in turn activates effector caspase 3/7. When the activities of caspases in the LPS-induced cells were inhibited using z-VADfmk and z-DEVDfmk, the expressions of c-MYC and Hsp70 were increased, but p53 was reduced. The potential molecules associated with protective and destructive effect was measured by RT2 Profiler PCR array to elucidate the signaling pathways and suggested inhibition NF-κB/caspase-3 signaling pathway regulates the cytoprotective genes and proto-oncogenes. In conclusion, this study provides a basis for future research to better understand the molecular mechanism underlying LPS pre-conditioning /TLR4 pre-activation and its functional role in offering cytoprotective response in neuronal environment.
    Matched MeSH terms: Interleukin-10
  11. Taha MM, Salga MS, Ali HM, Abdulla MA, Abdelwahab SI, Hadi AH
    J Ethnopharmacol, 2012 May 7;141(1):273-81.
    PMID: 22374081 DOI: 10.1016/j.jep.2012.02.030
    Turnera diffusa Willd. ex Schult. has been used for the treatment of several human disorders including peptic ulcer.
    Matched MeSH terms: Interleukin-10/metabolism
  12. Rehman K, Zulfakar MH
    Pharm Res, 2017 01;34(1):36-48.
    PMID: 27620176 DOI: 10.1007/s11095-016-2036-8
    PURPOSE: To characterize bigel system as a topical drug delivery vehicle and to establish the immunomodulatory role of imiquimod-fish oil combination against skin cancer and inflammation resulting from chemical carcinogenesis.

    METHODS: Imiquimod-loaded fish oil bigel colloidal system was prepared using a blend of carbopol hydrogel and fish oil oleogel. Bigels were first characterized for their mechanical properties and compared to conventional gel systems. Ex vivo permeation studies were performed on murine skin to analyze the ability of the bigels to transport drug across skin and to predict the release mechanism via mathematical modelling. Furthermore, to analyze pharmacological effectiveness in skin cancer and controlling imiquimod-induced inflammatory side effects, imiquimod-fish oil combination was tested in vitro on epidermoid carcinoma cells and in vivo in Swiss albino mice cancer model.

    RESULTS: Imiquimod-loaded fish oil bigels exhibited higher drug availability inside the skin as compared to individual imiquimod hydrogel and oleogel controls through quasi-Fickian diffusion mechanism. Imiquimod-fish oil combination in bigel enhanced the antitumor effects and significantly reduced serum pro-inflammatory cytokine levels such as tumor necrosis factor-alpha and interleukin-6, and reducing tumor progression via inhibition of vascular endothelial growth factor. Imiquimod-fish oil combination also resulted in increased expression of interleukin-10, an anti-inflammatory cytokine, which could also aid anti-tumor activity against skin cancer.

    CONCLUSION: Imiquimod administration through a bigel vehicle along with fish oil could be beneficial for controlling imiquimod-induced inflammatory side effects and in the treatment of skin cancer.

    Matched MeSH terms: Interleukin-10
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links