Displaying publications 81 - 92 of 92 in total

Abstract:
Sort:
  1. Hung TH, Li YH, Tseng CP, Lan YW, Hsu SC, Chen YH, et al.
    Cancer Gene Ther, 2015 May;22(5):262-70.
    PMID: 25908454 DOI: 10.1038/cgt.2015.15
    Inappropriate c-MET signaling in cancer can enhance tumor cell proliferation, survival, motility, and invasion. Inhibition of c-MET signaling induces apoptosis in a variety of cancers. It has also been recognized as a novel anticancer therapy approach. Furthermore, reports have also indicated that constitutive expression of P-glycoprotein (ABCB1) is involved in the HGF/c-MET-related pathway of multidrug resistance ABCB1-positive human hepatocellular carcinoma cell lines. We previously reported that elevated expression levels of PKCδ and AP-1 downstream genes, and HGF receptor (c-MET) and ABCB1, in the drug-resistant MES-SA/Dx5 cells. Moreover, leukemia cell lines overexpressing ABCB1 have also been shown to be more resistant to the tyrosine kinase inhibitor imatinib mesylate. These findings suggest that chemoresistant cancer cells may also develop a similar mechanism against chemotherapy agents. To circumvent clinical complications arising from drug resistance during cancer therapy, the present study was designed to investigate apoptosis induction in ABCB1-overexpressed cancer cells using c-MET-targeted RNA interference technology in vitro and in vivo. The results showed that cell viability decreased and apoptosis rate increased in c-MET shRNA-transfected HGF/c-MET pathway-positive MES-SA/Dx5 and MCF-7/ADR2 cell lines in a dose-dependent manner. In vivo reduction of tumor volume in mice harboring c-MET shRNA-knockdown MES-SA/Dx5 cells was clearly demonstrated. Our study demonstrated that downregulation of c-MET by shRNA-induced apoptosis in a multidrug resistance cell line.
    Matched MeSH terms: Mice, Nude
  2. Shu YH, Yuan HH, Xu MT, Hong YT, Gao CC, Wu ZP, et al.
    Acta Pharmacol Sin, 2021 May;42(5):780-790.
    PMID: 32814819 DOI: 10.1038/s41401-020-0492-5
    Guangsangon E (GSE) is a novel Diels-Alder adduct isolated from leaves of Morus alba L, a traditional Chinese medicine widely applied in respiratory diseases. It is reported that GSE has cytotoxic effect on cancer cells. In our research, we investigated its anticancer effect on respiratory cancer and revealed that GSE induces autophagy and apoptosis in lung and nasopharyngeal cancer cells. We first observed that GSE inhibits cell proliferation and induces apoptosis in A549 and CNE1 cells. Meanwhile, the upregulation of autophagosome marker LC3 and increased formation of GFP-LC3 puncta demonstrates the induction of autophagy in GSE-treated cells. Moreover, GSE increases the autophagy flux by enhancing lysosomal activity and the fusion of autophagosomes and lysosomes. Next, we investigated that endoplasmic reticulum (ER) stress is involved in autophagy induction by GSE. GSE activates the ER stress through reactive oxygen species (ROS) accumulation, which can be blocked by ROS scavenger NAC. Finally, inhibition of autophagy attenuates GSE-caused cell death, termed as "autophagy-mediated cell death." Taken together, we revealed the molecular mechanism of GSE against respiratory cancer, which demonstrates great potential of GSE in the treatment of representative cancer.
    Matched MeSH terms: Mice, Nude
  3. Lung RW, Hau PM, Yu KH, Yip KY, Tong JH, Chak WP, et al.
    J Pathol, 2018 Apr;244(4):394-407.
    PMID: 29230817 DOI: 10.1002/path.5018
    Nasopharyngeal carcinoma (NPC) is a highly invasive epithelial malignancy that is prevalent in southern China and Southeast Asia. It is consistently associated with latent Epstein-Barr virus (EBV) infection. In NPC, miR-BARTs, the EBV-encoded miRNAs derived from BamH1-A rightward transcripts, are abundantly expressed and contribute to cancer development by targeting various cellular and viral genes. In this study, we establish a comprehensive transcriptional profile of EBV-encoded miRNAs in a panel of NPC patient-derived xenografts and an EBV-positive NPC cell line by small RNA sequencing. Among the 40 miR-BARTs, predominant expression of 22 miRNAs was consistently detected in these tumors. Among the abundantly expressed EBV-miRNAs, BART5-5p, BART7-3p, BART9-3p, and BART14-3p could negatively regulate the expression of a key DNA double-strand break (DSB) repair gene, ataxia telangiectasia mutated (ATM), by binding to multiple sites on its 3'-UTR. Notably, the expression of these four miR-BARTs represented more than 10% of all EBV-encoded miRNAs in tumor cells, while downregulation of ATM expression was commonly detected in all of our tested sequenced samples. In addition, downregulation of ATM was also observed in primary NPC tissues in both qRT-PCR (16 NP and 45 NPC cases) and immunohistochemical staining (35 NP and 46 NPC cases) analysis. Modulation of ATM expression by BART5-5p, BART7-3p, BART9-3p, and BART14-3p was demonstrated in the transient transfection assays. These findings suggest that EBV uses miRNA machinery as a key mechanism to control the ATM signaling pathway in NPC cells. By suppressing these endogenous miR-BARTs in EBV-positive NPC cells, we further demonstrated the novel function of miR-BARTs in inhibiting Zta-induced lytic reactivation. These findings imply that the four viral miRNAs work co-operatively to modulate ATM activity in response to DNA damage and to maintain viral latency, contributing to the tumorigenesis of NPC. © 2017 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
    Matched MeSH terms: Mice, Nude
  4. Jia H, Liu M, Wang X, Jiang Q, Wang S, Santhanam RK, et al.
    Pharmacol Res, 2021 Jul;169:105686.
    PMID: 34022397 DOI: 10.1016/j.phrs.2021.105686
    Breast cancer (BC) occurrence and development tremendously affect female health. Currently breast cancer targeted drugs are still scarce. Natural products have become the main source of targeted drug for breast cancer due to low toxicity and high efficiency. Cimigenoside, natural compound isolated and purified from Cimicifuga dahurica (Turcz.) Maxim has been suggested to utilize for breast cancer treatment, however the mechanism of action has not been elucidated yet. In this article, the antitumor potential of Cimigenoside against breast cancer in vitro and in vivo study. Moreover, we further predicted the possible binding mode of Cimigenoside with γ-secretase through molecular docking studies. The results show that Cimigenoside has a significant inhibitory effect towards the proliferation or metastasis of breast cancer cells via suppressing the Notch signaling pathway-mediated mitochondrial apoptosis and EMT (epithelial mesenchymal transition). In terms of mechanism, Cimigenoside could inhibit the activation of PSEN-1, the catalytic subunit of γ-secretase, and also by cleaving the Notch protein mediated by PSEN-1. Overall, our findings provide scientific support to utilize Cimigenoside as an effective targeted drug for clinical treatment of BC.
    Matched MeSH terms: Mice, Nude
  5. Guerra GR, Kong JC, Millen RM, Read M, Liu DS, Roth S, et al.
    Cell Death Dis, 2021 Oct 18;12(11):959.
    PMID: 34663790 DOI: 10.1038/s41419-021-04141-5
    Anal cancer is a rare disease that has doubled in incidence over the last four decades. Current treatment and survival of patients with this disease has not changed substantially over this period of time, due, in part, to a paucity of preclinical models to assess new therapeutic options. To address this hiatus, we set-out to establish, validate and characterise a panel of human anal squamous cell carcinoma (ASCC) cell lines by employing an explant technique using fresh human ASCC tumour tissue. The panel of five human ASCC cell lines were validated to confirm their origin, squamous features and tumourigenicity, followed by molecular and genomic (whole-exome sequencing) characterisation. This panel recapitulates the genetic and molecular characteristics previously described in ASCC including phosphoinositide-3-kinase (PI3K) mutations in three of the human papillomavirus (HPV) positive lines and TP53 mutations in the HPV negative line. The cell lines demonstrate the ability to form tumouroids and retain their tumourigenic potential upon xenotransplantation, with varied inducible expression of major histocompatibility complex class I (MHC class I) and Programmed cell death ligand 1 (PD-L1). We observed differential responses to standard chemotherapy, radiotherapy and a PI3K specific molecular targeted agent in vitro, which correlated with the clinical response of the patient tumours from which they were derived. We anticipate this novel panel of human ASCC cell lines will form a valuable resource for future studies into the biology and therapeutics of this rare disease.
    Matched MeSH terms: Mice, Nude
  6. Dahham SS, Tabana Y, Asif M, Ahmed M, Babu D, Hassan LE, et al.
    Int J Mol Sci, 2021 Sep 29;22(19).
    PMID: 34638895 DOI: 10.3390/ijms221910550
    Beta-Caryophyllene (BCP), a naturally occurring sesquiterpene abundantly found in cloves, hops, and cannabis, is the active candidate of a relatively new group of vascular-inhibiting compounds that aim to block existing tumor blood vessels. Previously, we have reported the anti-cancer properties of BCP by utilizing a series of in-vitro anti-tumor-related assays using human colorectal carcinoma cells. The present study aimed to investigate the effects of BCP on in-vitro, ex-vivo, and in-vivo models of anti-angiogenic assays and evaluate its anti-cancer activity in xenograft tumor (both ectopic and orthotopic) mice models of human colorectal cancer. Computational structural analysis and an apoptosis antibody array were also performed to understand the molecular players underlying this effect. BCP exhibited strong anti-angiogenic activity by blocking the migration of endothelial cells, tube-like network formation, suppression of vascular endothelial growth factor (VEGF) secretion from human umbilical vein endothelial cells and sprouting of rat aorta microvessels. BCP has a probable binding at Site#0 on the surface of VEGFR2. Moreover, BCP significantly deformed the vascularization architecture compared to the negative control in a chick embryo chorioallantoic membrane assay. BCP showed a remarkable reduction in tumor size and fluorescence molecular tomography signal intensity in all the mice treated with BCP, in a dose-dependent relationship, in ectopic and orthotopic tumor xenograft models, respectively. The histological analysis of the tumor from BCP-treated mice revealed a clear reduction of the density of vascularization. In addition, BCP induced apoptosis through downregulation of HSP60, HTRA, survivin, and XIAP, along with the upregulation of p21 expressions. These results suggest that BCP acts at multiple stages of angiogenesis and could be used as a promising therapeutic candidate to halt the growth of colorectal tumor cells.
    Matched MeSH terms: Mice, Nude
  7. Daker M, Bhuvanendran S, Ahmad M, Takada K, Khoo AS
    Mol Med Rep, 2013 Mar;7(3):731-41.
    PMID: 23292678 DOI: 10.3892/mmr.2012.1253
    Nasopharyngeal carcinoma (NPC) is a unique tumour of epithelial origin with a distinct geographical distribution, closely associated with the Epstein‑Barr virus (EBV). EBV‑encoded RNAs (EBERs) are small non‑polyadenylated RNAs that are abundantly expressed in latent EBV‑infected NPC cells. To study the role of EBERs in NPC, we established stable expression of EBERs in HK1, an EBV‑negative NPC cell line. Cells expressing EBERs consistently exhibited an increased growth rate. However, EBERs did not confer resistance towards cisplatin‑induced apoptosis or promote migration or invasion ability in the cells tested. Using microarray gene expression profiling, we identified potential candidate genes that were deregulated in NPC cells expressing EBERs. Gene Ontology analysis of the data set revealed that EBERs upregulate the cellular lipid metabolic process. Upregulation of low‑density lipoprotein receptor (LDLR) and fatty acid synthase (FASN) was observed in EBER‑expressing cells. NPC cells exhibited LDL‑dependent cell proliferation. In addition, a polyphenolic flavonoid compound, quercetin, known to inhibit FASN, was found to inhibit proliferation of NPC cells.
    Matched MeSH terms: Mice, Nude
  8. Aisha AF, Ismail Z, Abu-Salah KM, Siddiqui JM, Ghafar G, Abdul Majid AM
    PMID: 23842450 DOI: 10.1186/1472-6882-13-168
    Syzygium campanulatum Korth (Myrtaceae) is an evergreen shrub rich in phenolics, flavonoid antioxidants, and betulinic acid. This study sought to investigate antiangiogenic and anti-colon cancer effects of S.C. standardized methanolic extract.
    Matched MeSH terms: Mice, Nude
  9. Lee ST, Wong PF, Hooper JD, Mustafa MR
    Phytomedicine, 2013 Nov 15;20(14):1297-305.
    PMID: 23920276 DOI: 10.1016/j.phymed.2013.07.002
    Alpha (α)-tomatine, a major saponin found in tomato has been shown to inhibit the growth of androgen-independent prostate cancer PC-3 cells. The effects of α-tomatine in combination with the chemotherapeutic agent paclitaxel against PC-3 cells were investigated in the present study. Combined treatment with a sub-toxic dose of α-tomatine and paclitaxel significantly decreased cell viability with concomitant increase in the percentage of apoptotic PC-3 cells. The combined treatment, however, had no cytotoxic effect on the non-neoplastic prostate RWPE-1 cells. Apoptosis of PC-3 cells was accompanied by the inhibition of PI3K/Akt pro-survival signaling, an increase in the expression of the pro-apoptotic protein BAD but a decrease in the expressions of anti-apoptotic proteins, Bcl-2 and Bcl-xL. Results from a mouse xenograft model showed the combined treatment completely suppressed subcutaneous tumor growth without significant side effects. Consistent with its in vitro anti-cancer effects, tumor materials from mice showed increased apoptosis of tumor cells with reduced protein expression of activated PI3K/Akt. These results suggest that the synergistic anti-cancer effects of paclitaxel and α-tomatine may be beneficial for refractory prostate cancer treatment.
    Matched MeSH terms: Mice, Nude
  10. Tabana YM, Hassan LE, Ahamed MB, Dahham SS, Iqbal MA, Saeed MA, et al.
    Microvasc Res, 2016 09;107:17-33.
    PMID: 27133199 DOI: 10.1016/j.mvr.2016.04.009
    We recently reported the antineovascularization effect of scopoletin on rat aorta and identified its potential anti-angiogenic activity. Scopoletin could be useful as a systemic chemotherapeutic agent against angiogenesis-dependent malignancies if its antitumorigenic activity is investigated and scientifically proven using a suitable human tumor xenograft model. In the present study, bioassay-guided (anti-angiogenesis) phytochemical investigation was conducted on Nicotiana glauca extract which led to the isolation of scopoletin. Further, anti-angiogenic activity of scopoletin was characterized using ex vivo, in vivo and in silico angiogenesis models. Finally, the antitumorigenic efficacy of scopoletin was studied in human colorectal tumor xenograft model using athymic nude mice. For the first time, an in vivo anticancer activity of scopoletin was reported and characterized using xenograft models. Scopoletin caused significant suppression of sprouting of microvessels in rat aortic explants with IC50 (median inhibitory concentration) 0.06μM. Scopoletin (100 and 200mg/kg) strongly inhibited (59.72 and 89.4%, respectively) vascularization in matrigel plugs implanted in nude mice. In the tumor xenograft model, scopoletin showed remarkable inhibition on tumor growth (34.2 and 94.7% at 100 and 200mg/kg, respectively). Tumor histology revealed drastic reduction of the extent of vascularization. Further, immunostaining of CD31 and NG2 receptors in the histological sections confirmed the antivascular effect of scopoletin in tumor vasculature. In computer modeling, scopoletin showed strong ligand affinity and binding energies toward the following angiogenic factors: protein kinase (ERK1), vascular endothelial growth factor A (VEGF-A), and fibroblast growth factor 2 (FGF-2). These results suggest that the antitumor activity of scopoletin may be due to its strong anti-angiogenic effect, which may be mediated by its effective inhibition of ERK1, VEGF-A, and FGF-2.
    Matched MeSH terms: Mice, Nude
  11. Al-Salahi OS, Kit-Lam C, Majid AM, Al-Suede FS, Mohammed Saghir SA, Abdullah WZ, et al.
    Microvasc Res, 2013 Nov;90:30-9.
    PMID: 23899415 DOI: 10.1016/j.mvr.2013.07.007
    Targeting angiogenesis could be an excellent strategy to combat angiogenesis-dependent pathophysiological conditions such as cancer, rheumatoid arthritis, obesity, systemic lupus erythematosus, psoriasis, proliferative retinopathy and atherosclerosis. Recently a number of clinical investigations are being undertaken to assess the potential therapeutic application of various anti-angiogenic agents. Many of these angiogenesis inhibitors are directed against the functions of endothelial cells, which are considered as the building blocks of blood vessels. Similarly, roots of a traditional medicinal plant, Eurycoma longifolia, can be used as an alternative treatment to prevent and treat the angiogenesis-related diseases. In the present study, antiangiogenic potential of partially purified quassinoid-rich fraction (TAF273) of E. longifolia root extract was evaluated using ex vivo and in vivo angiogenesis models and the anti-angiogenic efficacy of TAF273 was investigated in human umbilical vein endothelial cells (HUVEC). TAF273 caused significant suppression in sprouting of microvessels in rat aorta with IC50 11.5μg/ml. TAF273 (50μg/ml) showed remarkable inhibition (63.13%) of neovascularization in chorioallantoic membrane of chick embryo. Tumor histology also revealed marked reduction in extent of vascularization. In vitro, TAF273 significantly inhibited the major angiogenesis steps such as proliferation, migration and differentiation of HUVECs. Phytochemical analysis revealed high content of quassinoids in TAF273. Specially, HPLC characterization showed that TAF273 is enriched with eurycomanone, 13α(21)-epoxyeurycomanone and eurycomanol. These results demonstrated that the antiangiogenic activity of TAF273 may be due to its inhibitory effect on endothelial cell proliferation, differentiation and migration which could be attributed to the high content of quassinoids in E. longifolia.
    Matched MeSH terms: Mice, Nude
  12. Hasanpourghadi M, Pandurangan AK, Karthikeyan C, Trivedi P, Mustafa MR
    Oncotarget, 2017 Apr 25;8(17):28840-28853.
    PMID: 28392503 DOI: 10.18632/oncotarget.16263
    Microtubule Targeting Agents (MTAs) induce cell death through mitotic arrest, preferentially affecting rapidly dividing cancer cells over slowly proliferating normal cells. Previously, we showed that Methyl 2-(-5-fluoro-2-hydroxyphenyl)-1H-benzo[d]imidazole-5-carboxylate (MBIC) acts as a potential MTA. In this study, we demonstrated that MBIC exhibits greater toxicity towards non-aggressive breast cancer cell-line, MCF-7 (IC50 = 0.73 ± 0.0 μM) compared to normal fibroblast cell-line, L-cells (IC50 = 59.6 ± 2.5 μM). The IC50 of MBIC against the aggressive breast cancer cell-line, MDA-MB-231 was 20.4 ± 0.2 μM. We hypothesized that the relatively high resistance of MDA-MB-231 cells to MBIC is associated with p53 mutation. We investigated p53 and three of its downstream proteins: survivin, cyclin dependent kinase (Cdk1) and cyclin B1. Following treatment with MBIC, survivin co-immunoprecipitated with caspases with higher affinity in MDA-MB-231 compared to MCF-7 cells. Furthermore, silencing survivin caused a 4.5-fold increase in sensitivity of MDA-MB-231 cells to MBIC (IC50 = 4.4 ± 0.3). In addition, 4 weeks of MBIC administration in MDA-MB-231 cells inoculated BALB/c nude mice resulted in 79.7% reduction of tumor volume compared to the untreated group with no severe sign of toxicity. Our results demonstrated MBIC has multiple anti-tumor actions and could be a potential drug in breast cancer therapy.
    Matched MeSH terms: Mice, Nude
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links