Displaying publications 81 - 100 of 113 in total

Abstract:
Sort:
  1. Shaipulah NF, Muhlemann JK, Woodworth BD, Van Moerkercke A, Verdonk JC, Ramirez AA, et al.
    Plant Physiol, 2016 Feb;170(2):717-31.
    PMID: 26620524 DOI: 10.1104/pp.15.01646
    Anthocyanins and volatile phenylpropenes (isoeugenol and eugenol) in petunia (Petunia hybrida) flowers have the precursor 4-coumaryl coenzyme A (CoA) in common. These phenolics are produced at different stages during flower development. Anthocyanins are synthesized during early stages of flower development and sequestered in vacuoles during the lifespan of the flowers. The production of isoeugenol and eugenol starts when flowers open and peaks after anthesis. To elucidate additional biochemical steps toward (iso)eugenol production, we cloned and characterized a caffeoyl-coenzyme A O-methyltransferase (PhCCoAOMT1) from the petals of the fragrant petunia 'Mitchell'. Recombinant PhCCoAOMT1 indeed catalyzed the methylation of caffeoyl-CoA to produce feruloyl CoA. Silencing of PhCCoAOMT1 resulted in a reduction of eugenol production but not of isoeugenol. Unexpectedly, the transgenic plants had purple-colored leaves and pink flowers, despite the fact that cv Mitchell lacks the functional R2R3-MYB master regulator ANTHOCYANIN2 and has normally white flowers. Our results indicate that down-regulation of PhCCoAOMT1 activated the anthocyanin pathway through the R2R3-MYBs PURPLE HAZE (PHZ) and DEEP PURPLE, with predominantly petunidin accumulating. Feeding cv Mitchell flowers with caffeic acid induced PHZ expression, suggesting that the metabolic perturbation of the phenylpropanoid pathway underlies the activation of the anthocyanin pathway. Our results demonstrate a role for PhCCoAOMT1 in phenylpropene production and reveal a link between PhCCoAOMT1 and anthocyanin production.
    Matched MeSH terms: Plant Proteins/genetics
  2. Shokrollahi N, Ho CL, Zainudin NAIM, Wahab MABA, Wong MY
    Sci Rep, 2021 Aug 11;11(1):16330.
    PMID: 34381084 DOI: 10.1038/s41598-021-95549-8
    Basal stem rot (BSR) of oil palm is a disastrous disease caused by a white-rot fungus Ganoderma boninense Pat. Non-ribosomal peptides (NRPs) synthesized by non-ribosomal peptide synthetases (NRPSs) are a group of secondary metabolites that act as fungal virulent factors during pathogenesis in the host. In this study, we aimed to isolate NRPS gene of G. boninense strain UPMGB001 and investigate the role of this gene during G. boninense-oil palm interaction. The isolated NRPS DNA fragment of 8322 bp was used to predict the putative peptide sequence of different domains and showed similarity with G. sinense (85%) at conserved motifs of three main NRPS domains. Phylogenetic analysis of NRPS peptide sequences demonstrated that NRPS of G. boninense belongs to the type VI siderophore family. The roots of 6-month-old oil palm seedlings were artificially inoculated for studying NRPS gene expression and disease severity in the greenhouse. The correlation between high disease severity (50%) and high expression (67-fold) of G. boninense NRPS gene at 4 months after inoculation and above indicated that this gene played a significant role in the advancement of BSR disease. Overall, these findings increase our knowledge on the gene structure of NRPS in G. boninense and its involvement in BSR pathogenesis as an effector gene.
    Matched MeSH terms: Plant Proteins/genetics*
  3. Singh P, Mazumdar P, Harikrishna JA, Babu S
    Planta, 2019 Nov;250(5):1387-1407.
    PMID: 31346804 DOI: 10.1007/s00425-019-03246-8
    MAIN CONCLUSION: Rice sheath blight research should prioritise optimising biological control approaches, identification of resistance gene mechanisms and application in genetic improvement and smart farming for early disease detection. Rice sheath blight, caused by Rhizoctonia solani AG1-1A, is one of the most devasting diseases of the crop. To move forward with effective crop protection against sheath blight, it is important to review the published information related to pathogenicity and disease management and to determine areas of research that require deeper study. While progress has been made in the identification of pathogenesis-related genes both in rice and in the pathogen, the mechanisms remain unclear. Research related to disease management practices has addressed the use of agronomic practices, chemical control, biological control and genetic improvement: Optimising nitrogen fertiliser use in conjunction with plant spacing can reduce spread of infection while smart agriculture technologies such as crop monitoring with Unmanned Aerial Systems assist in early detection and management of sheath blight disease. Replacing older fungicides with natural fungicides and use of biological agents can provide effective sheath blight control, also minimising environmental impact. Genetic approaches that show promise for the control of sheath blight include treatment with exogenous dsRNA to silence pathogen gene expression, genome editing to develop rice lines with lower susceptibility to sheath blight and development of transgenic rice lines overexpressing or silencing pathogenesis related genes. The main challenges that were identified for effective crop protection against sheath blight are the adaptive flexibility of the pathogen, lack of resistant rice varieties, abscence of single resistance genes for use in breeding and low access of farmers to awareness programmes for optimal management practices.
    Matched MeSH terms: Plant Proteins/genetics
  4. Singh R, Low ET, Ooi LC, Ong-Abdullah M, Nookiah R, Ting NC, et al.
    Nat Commun, 2014 Jun 30;5:4106.
    PMID: 24978855 DOI: 10.1038/ncomms5106
    Oil palm, a plantation crop of major economic importance in Southeast Asia, is the predominant source of edible oil worldwide. We report the identification of the virescens (VIR) gene, which controls fruit exocarp colour and is an indicator of ripeness. VIR is a R2R3-MYB transcription factor with homology to Lilium LhMYB12 and similarity to Arabidopsis production of anthocyanin pigment1 (PAP1). We identify five independent mutant alleles of VIR in over 400 accessions from sub-Saharan Africa that account for the dominant-negative virescens phenotype. Each mutation results in premature termination of the carboxy-terminal domain of VIR, resembling McClintock's C1-I allele in maize. The abundance of alleles likely reflects cultural practices, by which fruits were venerated for magical and medicinal properties. The identification of VIR will allow selection of the trait at the seed or early-nursery stage, 3-6 years before fruits are produced, greatly advancing introgression into elite breeding material.
    Matched MeSH terms: Plant Proteins/genetics
  5. Song AA, Abdullah JO, Abdullah MP, Shafee N, Rahim RA
    Int J Mol Sci, 2012;13(2):1582-97.
    PMID: 22408409 DOI: 10.3390/ijms13021582
    Vanda Mimi Palmer (VMP), an orchid hybrid of Vanda tesselata and Vanda Tan Chay Yan is a highly scented tropical orchid which blooms all year round. Previous studies revealed that VMP produces a variety of isoprenoid volatiles during daylight. Isoprenoids are well known to contribute significantly to the scent of most fragrant plants. They are a large group of secondary metabolites which may possess valuable characteristics such as flavor, fragrance and toxicity and are produced via two pathways, the mevalonate (MVA) pathway or/and the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway. In this study, a sesquiterpene synthase gene denoted VMPSTS, previously isolated from a floral cDNA library of VMP was cloned and expressed in Lactococcus lactis to characterize the functionality of the protein. L. lactis, a food grade bacterium which utilizes the mevalonate pathway for isoprenoid production was found to be a suitable host for the characterization of plant terpene synthases. Through recombinant expression of VMPSTS, it was revealed that VMPSTS produced multiple sesquiterpenes and germacrene D dominates its profile.
    Matched MeSH terms: Plant Proteins/genetics
  6. Tam SM, Samipak S, Britt A, Chetelat RT
    Genetica, 2009 Dec;137(3):341-54.
    PMID: 19690966 DOI: 10.1007/s10709-009-9398-3
    DNA mismatch repair proteins play an essential role in maintaining genomic integrity during replication and genetic recombination. We successfully isolated a full length MSH2 and partial MSH7 cDNAs from tomato, based on sequence similarity between MutS and plant MSH homologues. Semi-quantitative RT-PCR reveals higher levels of mRNA expression of both genes in young leaves and floral buds. Genetic mapping placed MSH2 and MSH7 on chromosomes 6 and 7, respectively, and indicates that these genes exist as single copies in the tomato genome. Analysis of protein sequences and phylogeny of the plant MSH gene family show that these proteins are evolutionarily conserved, and follow the classical model of asymmetric protein evolution. Genetic manipulation of the expression of these MSH genes in tomato will provide a potentially useful tool for modifying genetic recombination and hybrid fertility between wide crosses.
    Matched MeSH terms: Plant Proteins/genetics*
  7. Tan BC, Lim YS, Lau SE
    J Proteomics, 2017 10 03;169:176-188.
    PMID: 28546092 DOI: 10.1016/j.jprot.2017.05.018
    Proteomics is a rapidly growing area of biological research that is positively affecting plant science. Recent advances in proteomic technology, such as mass spectrometry, can now identify a broad range of proteins and monitor their modulation during plant growth and development, as well as during responses to abiotic and biotic stresses. In this review, we highlight recent proteomic studies of commercial crops and discuss the advances in understanding of the proteomes of these crops. We anticipate that proteomic-based research will continue to expand and contribute to crop improvement.

    SIGNIFICANCE: Plant proteomics study is a rapidly growing area of biological research that is positively impacting plant science. With the recent advances in new technologies, proteomics not only allows us to comprehensively analyses crop proteins, but also help us to understand the functions of the genes. In this review, we highlighted recent proteomic studies in commercial crops and updated the advances in our understanding of the proteomes of these crops. We believe that proteomic-based research will continue to grow and contribute to the improvement of crops.

    Matched MeSH terms: Plant Proteins/genetics
  8. Tan YC, Yeoh KA, Wong MY, Ho CL
    J Plant Physiol, 2013 Nov 01;170(16):1455-60.
    PMID: 23769496 DOI: 10.1016/j.jplph.2013.05.009
    Basal stem rot (BSR) is a major disease of oil palm caused by a pathogenic fungus, Ganoderma boninense. However, the interaction between the host plant and its pathogen is not well characterized. To better understand the response of oil palm to G. boninense, transcript profiles of eleven putative defence-related genes from oil palm were measured by quantitative reverse-transcription (qRT)-PCR in the roots of oil palms treated with G. boninense from 3 to 12 weeks post infection (wpi). These transcripts encode putative Bowman-Birk serine protease inhibitors (EgBBI1 and 2), defensin (EgDFS), dehydrin (EgDHN), early methionine-labeled polypeptides (EgEMLP1 and 2), glycine-rich RNA binding protein (EgGRRBP), isoflavone reductase (EgIFR), metallothionein-like protein (EgMT), pathogenesis-related-1 protein (EgPRP), and type 2 ribosome-inactivating protein (EgT2RIP). The transcript abundance of EgBBI2 increased in G. boninense-treated roots at 3 and 6wpi compared to those of controls; while the transcript abundance of EgBBI1, EgDFS, EgEMLP1, EgMT, and EgT2RIP increased in G. boninense-treated roots at 6 or 12wpi. Meanwhile, the gene expression of EgDHN was up-regulated at all three time points in G. boninense-treated roots. The expression profiles of the eleven transcripts were also studied in leaf samples upon inoculation of G. boninense and Trichoderma harzianum to identify potential biomarkers for early detection of BSR. Two candidate genes (EgEMLP1 and EgMT) that have different profiles in G. boninense-treated leaves compared to those infected by T. harzianum may have the potential to be developed as biomarkers for early detection of G. boninense infection.
    Matched MeSH terms: Plant Proteins/genetics*
  9. Teh BT, Lim K, Yong CH, Ng CCY, Rao SR, Rajasegaran V, et al.
    Nat Genet, 2017 Nov;49(11):1633-1641.
    PMID: 28991254 DOI: 10.1038/ng.3972
    Durian (Durio zibethinus) is a Southeast Asian tropical plant known for its hefty, spine-covered fruit and sulfury and onion-like odor. Here we present a draft genome assembly of D. zibethinus, representing the third plant genus in the Malvales order and first in the Helicteroideae subfamily to be sequenced. Single-molecule sequencing and chromosome contact maps enabled assembly of the highly heterozygous durian genome at chromosome-scale resolution. Transcriptomic analysis showed upregulation of sulfur-, ethylene-, and lipid-related pathways in durian fruits. We observed paleopolyploidization events shared by durian and cotton and durian-specific gene expansions in MGL (methionine γ-lyase), associated with production of volatile sulfur compounds (VSCs). MGL and the ethylene-related gene ACS (aminocyclopropane-1-carboxylic acid synthase) were upregulated in fruits concomitantly with their downstream metabolites (VSCs and ethylene), suggesting a potential association between ethylene biosynthesis and methionine regeneration via the Yang cycle. The durian genome provides a resource for tropical fruit biology and agronomy.
    Matched MeSH terms: Plant Proteins/genetics*
  10. Teh CK, Muaz SD, Tangaya P, Fong PY, Ong AL, Mayes S, et al.
    Sci Rep, 2017 06 08;7(1):3118.
    PMID: 28596562 DOI: 10.1038/s41598-017-03225-7
    The fundamental trait in selective breeding of oil palm (Eleais guineensis Jacq.) is the shell thickness surrounding the kernel. The monogenic shell thickness is inversely correlated to mesocarp thickness, where the crude palm oil accumulates. Commercial thin-shelled tenera derived from thick-shelled dura × shell-less pisifera generally contain 30% higher oil per bunch. Two mutations, sh MPOB (M1) and sh AVROS (M2) in the SHELL gene - a type II MADS-box transcription factor mainly present in AVROS and Nigerian origins, were reported to be responsible for different fruit forms. In this study, we have tested 1,339 samples maintained in Sime Darby Plantation using both mutations. Five genotype-phenotype discrepancies and eight controls were then re-tested with all five reported mutations (sh AVROS , sh MPOB , sh MPOB2 , sh MPOB3 and sh MPOB4 ) within the same gene. The integration of genotypic data, pedigree records and shell formation model further explained the haploinsufficiency effect on the SHELL gene with different number of functional copies. Some rare mutations were also identified, suggesting a need to further confirm the existence of cis-compound mutations in the gene. With this, the prediction accuracy of fruit forms can be further improved, especially in introgressive hybrids of oil palm. Understanding causative variant segregation is extremely important, even for monogenic traits such as shell thickness in oil palm.
    Matched MeSH terms: Plant Proteins/genetics*
  11. Teh HF, Neoh BK, Wong YC, Kwong QB, Ooi TE, Ng TL, et al.
    J Agric Food Chem, 2014 Aug 13;62(32):8143-52.
    PMID: 25032485 DOI: 10.1021/jf500975h
    Oil palm is one of the most productive oil-producing crops and can store up to 90% oil in its fruit mesocarp. Oil palm fruit is a sessile drupe consisting of a fleshy mesocarp from which palm oil is extracted. Biochemical changes in the mesocarp cell walls, polyamines, and hormones at different ripening stages of oil palm fruits were studied, and the relationship between the structural and the biochemical metabolism of oil palm fruits during ripening is discussed. Time-course analysis of the changes in expression of polyamines, hormones, and cell-wall-related genes and metabolites provided insights into the complex processes and interactions involved in fruit development. Overall, a strong reduction in auxin-responsive gene expression was observed from 18 to 22 weeks after pollination. High polyamine concentrations coincided with fruit enlargement during lipid accumulation and latter stages of maturation. The trend of abscisic acid (ABA) concentration was concordant with GA₄ but opposite to the GA₃ profile such that as ABA levels increase the resulting elevated ABA/GA₃ ratio clearly coincides with maturation. Polygalacturonase, expansin, and actin gene expressions were also observed to increase during fruit maturation. The identification of the master regulators of these coordinated processes may allow screening for oil palm variants with altered ripening profiles.
    Matched MeSH terms: Plant Proteins/genetics
  12. Teh OK, Ramli US
    Mol Biotechnol, 2011 Jun;48(2):97-108.
    PMID: 21113689 DOI: 10.1007/s12033-010-9350-x
    As the world population grows, the demand for food increases. Although vegetable oils provide an affordable and rich source of energy, the supply of vegetable oils available for human consumption is limited by the "fuel vs food" debate. To increase the nutritional value of vegetable oil, metabolic engineering may be used to produce oil crops of desirable fatty acid composition. We have isolated and characterized β-ketoacyl ACP-synthase II (KASII) cDNA from a high-oleic acid palm, Jessenia bataua. Jessenia KASII (JbKASII) encodes a 488-amino acid polypeptide that possesses conserved domains that are necessary for condensing activities. When overexpressed in E. coli, recombinant His-tagged JbKASII was insoluble and non-functional. However, Arabidopsis plants expressing GFP-JbKASII fusions had elevated levels of arachidic acid (C20:0) and erucic acid (C22:1) at the expense of stearic acid (C18:0) and oleic acid (C18:1). Furthermore, JbKASII failed to complement the Arabidopsis KASII mutant, fab1-2. This suggests that the substrate specificity of JbKASII is similar to that of ketoacyl-CoA synthase (KCS), which preferentially elongates stearic and oleic acids, and not palmitic acid. Our results suggest that the KCS-like JbKASII may elongate C18:0 and C18:1 to yield C20:0 and C22:1, respectively. JbKASII may, therefore, be an interesting candidate gene for promoting the production of very long chain fatty acids in transgenic oil crops.
    Matched MeSH terms: Plant Proteins/genetics
  13. Thayale Purayil F, Rajashekar B, S Kurup S, Cheruth AJ, Subramaniam S, Hassan Tawfik N, et al.
    Genes (Basel), 2020 06 10;11(6).
    PMID: 32531994 DOI: 10.3390/genes11060640
    Haloxylon persicum is an endangered western Asiatic desert plant species, which survives under extreme environmental conditions. In this study, we focused on transcriptome analysis of H. persicum to understand the molecular mechanisms associated with drought tolerance. Two different periods of polyethylene glycol (PEG)-induced drought stress (48 h and 72 h) were imposed on H. persicum under in vitro conditions, which resulted in 18 million reads, subsequently assembled by de novo method with more than 8000 transcripts in each treatment. The N50 values were 1437, 1467, and 1524 for the control sample, 48 h samples, and 72 h samples, respectively. The gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis resulted in enrichment of mitogen-activated protein kinase (MAPK) and plant hormone signal transduction pathways under PEG-induced drought conditions. The differential gene expression analysis (DGEs) revealed significant changes in the expression pattern between the control and the treated samples. The KEGG analysis resulted in mapping transcripts with 138 different pathways reported in plants. The differential expression of drought-responsive transcription factors depicts the possible signaling cascades involved in drought tolerance. The present study provides greater insight into the fundamental transcriptome reprogramming of desert plants under drought.
    Matched MeSH terms: Plant Proteins/genetics*
  14. Tiwari GJ, Liu Q, Shreshtha P, Li Z, Rahman S
    BMC Plant Biol, 2016 08 31;16(1):189.
    PMID: 27581494 DOI: 10.1186/s12870-016-0881-6
    BACKGROUND: The bran from polished rice grains can be used to produce rice bran oil (RBO). High oleic (HO) RBO has been generated previously through RNAi down-regulation of OsFAD2-1. HO-RBO has higher oxidative stability and could be directly used in the food industry without hydrogenation, and is hence free of trans fatty acids. However, relative to a classic oilseed, lipid metabolism in the rice grain is poorly studied and the genetic alteration in the novel HO genotype remains unexplored.

    RESULTS: Here, we have undertaken further analysis of role of OsFAD2-1 in the developing rice grain. The use of Illumina-based NGS transcriptomics analysis of developing rice grain reveals that knockdown of Os-FAD2-1 gene expression was accompanied by the down regulation of the expression of a number of key genes in the lipid biosynthesis pathway in the HO rice line. A slightly higher level of oil accumulation was also observed in the HO-RBO.

    CONCLUSION: Prominent among the down regulated genes were those that coded for FatA, LACS, SAD2, SAD5, caleosin and steroleosin. It may be possible to further increase the oleic acid content in rice oil by altering the expression of the lipid biosynthetic genes that are affected in the HO line.

    Matched MeSH terms: Plant Proteins/genetics*
  15. Wagner B, Krebitz M, Buck D, Niggemann B, Yeang HY, Han KH, et al.
    J Allergy Clin Immunol, 1999 Nov;104(5):1084-92.
    PMID: 10550757
    BACKGROUND: Two natural rubber latex proteins, Hev b 1 and Hev b 3, have been described in spina bifida (SB)-associated latex allergy.

    OBJECTIVE: The aim of this study was to clone and express Hev b 3 and to obtain the immunologic active and soluble recombinant allergen for diagnosis of SB-associated latex allergy.

    METHODS: A complementary DNA (cDNA) coding for Hev b 3 was amplified from RNA of fresh latex collected from Malaysian rubber trees (Hevea brasiliensis). PCR primers were designed according to sequences of internal peptide fragments of natural (n) Hev b 3. The 5'-end sequence was obtained by specific amplification of cDNA ends. The recombinant (r) Hev b 3 was produced in Escherichia coli as a 6xHis tagged protein. Immunoblotting and inhibition assays were performed to characterize the recombinant allergen.

    RESULTS: An Hev b 3 cDNA clone of 922 bp encoding a protein of 204 amino acid residues corresponding to a molecular weight of 22.3 kd was obtained. In immunoblots 29/35, latex-allergic patients with SB revealed IgE binding to rHev b 3, as did 4 of 15 of the latex-sensitized group. The presence of all IgE epitopes on rHev b 3 was shown by its ability to abolish all IgE binding to nHev b 3. Hev b 3 is related to Hev b 1 by a sequence identity of 47%. Cross-reactivity between these 2 latex allergens was illustrated by the large extent of inhibition of IgE binding to nHev b 1 by rHev b 3.

    CONCLUSION: rHev b 3 constitutes a suitable in vitro reagent for the diagnosis of latex allergy in patients with SB. The determination of the full sequence of Hev b 3 and the production of the recombinant allergen will allow the epitope mapping and improve diagnostic reagents for latex allergy.

    Matched MeSH terms: Plant Proteins/genetics
  16. Wan Zakaria WNA, Aizat WM, Goh HH, Mohd Noor N
    J Plant Res, 2019 Sep;132(5):681-694.
    PMID: 31422552 DOI: 10.1007/s10265-019-01130-w
    Carnivorous plants capture and digest insects for nutrients, allowing them to survive in soil deprived of nitrogenous nutrients. Plants from the genus Nepenthes produce unique pitchers containing secretory glands, which secrete enzymes into the digestive fluid. We performed RNA-seq analysis on the pitcher tissues and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis on the pitcher fluids of Nepenthes × ventrata to study protein expression in this carnivory organ during early days of pitcher opening. This transcriptome provides a sequence database for pitcher fluid protein identification. A total of 32 proteins of diverse functions were successfully identified in which 19 proteins can be quantified based on label-free quantitative proteomics (SWATH-MS) analysis while 16 proteins were not reported previously. Our findings show that certain proteins in the pitcher fluid were continuously secreted or replenished after pitcher opening, even without any prey or chitin induction. We also discovered a new aspartic proteinase, Nep6, secreted into pitcher fluid. This is the first SWATH-MS analysis of protein expression in Nepenthes pitcher fluid using a species-specific reference transcriptome. Taken together, our study using a gel-free shotgun proteomics informed by transcriptomics (PIT) approach showed the dynamics of endogenous protein secretion in the digestive organ of N. × ventrata and provides insights on protein regulation during early pitcher opening prior to prey capture.
    Matched MeSH terms: Plant Proteins/genetics*
  17. Wang D, Samsulrizal NH, Yan C, Allcock NS, Craigon J, Blanco-Ulate B, et al.
    Plant Physiol, 2019 02;179(2):544-557.
    PMID: 30459263 DOI: 10.1104/pp.18.01187
    Tomato (Solanum lycopersicum) is a globally important crop with an economic value in the tens of billions of dollars, and a significant supplier of essential vitamins, minerals, and phytochemicals in the human diet. Shelf life is a key quality trait related to alterations in cuticle properties and remodeling of the fruit cell walls. Studies with transgenic tomato plants undertaken over the last 20 years have indicated that a range of pectin-degrading enzymes are involved in cell wall remodeling. These studies usually involved silencing of only a single gene and it has proved difficult to compare the effects of silencing these genes across the different experimental systems. Here we report the generation of CRISPR-based mutants in the ripening-related genes encoding the pectin-degrading enzymes pectate lyase (PL), polygalacturonase 2a (PG2a), and β-galactanase (TBG4). Comparison of the physiochemical properties of the fruits from a range of PL, PG2a, and TBG4 CRISPR lines demonstrated that only mutations in PL resulted in firmer fruits, although mutations in PG2a and TBG4 influenced fruit color and weight. Pectin localization, distribution, and solubility in the pericarp cells of the CRISPR mutant fruits were investigated using the monoclonal antibody probes LM19 to deesterified homogalacturonan, INRA-RU1 to rhamnogalacturonan I, LM5 to β-1,4-galactan, and LM6 to arabinan epitopes, respectively. The data indicate that PL, PG2a, and TBG4 act on separate cell wall domains and the importance of cellulose microfibril-associated pectin is reflected in its increased occurrence in the different mutant lines.
    Matched MeSH terms: Plant Proteins/genetics
  18. Wang LY, Wang YS, Cheng H, Zhang JP, Yeok FS
    Ecotoxicology, 2015 Oct;24(7-8):1705-13.
    PMID: 26044931 DOI: 10.1007/s10646-015-1502-0
    Chitinases in terrestrial plants have been reported these are involved in heavy metal tolerance/detoxification. This is the first attempt to reveal chitinase gene (AcCHI I) and its function on metal detoxification in mangroves Aegiceras corniculatum. RT-PCR and RACE techniques were used to clone AcCHI I, while real-time quantitative PCR was employed to assess AcCHI I mRNA expressions in response to Cadmium (Cd). The deduced AcCHI I protein consists of 316 amino acids, including a signal peptide region, a chitin-binding domain (CBD) and a catalytic domain. Protein homology modeling was performed to identify potential features in AcCHI I. The CBD structure of AcCHI I might be critical for metal tolerance/homeostasis of the plant. Clear tissue-specific differences in AcCHI I expression were detected, with higher transcript levels detected in leaves. Results demonstrated that a short duration of Cd exposure (e.g., 3 days) promoted AcCHI I expression in roots. Upregulated expression was also detected in leaves under 10 mg/kg Cd concentration stress. The present study demonstrates that AcCHI I may play an important role in Cd tolerance/homeostasis in the plant. Further studies of the AcCHI I protein, gene overexpression, the promoter and upstream regulation will be necessary for clarifying the functions of AcCHI I.
    Matched MeSH terms: Plant Proteins/genetics*
  19. Wang Z, Huang S, Jia C, Liu J, Zhang J, Xu B, et al.
    Plant Cell Rep, 2013 Sep;32(9):1373-80.
    PMID: 23652818 DOI: 10.1007/s00299-013-1449-7
    KEY MESSAGE: Three tau class MaGSTs responded to abiotic stress, MaGSTF1 and MaGSTL1 responded to signaling molecules, they may play an important role in the growth of banana plantlet. Glutathione S-transferases (GST) are multifunctional detoxification enzymes that participate in a variety of cellular processes, including stress responses. In this study, we report the molecular characteristics of five GST genes (MaGSTU1, MaGSTU2, MaGSTU3, MaGSTF1 and MaGSTL1) cloned from banana (Musa acuminate L. AAA group, cv. Cavendish) using a RACE-PCR-based strategy. The predicted molecular masses of these GSTs range from 23.4 to 27.7 kDa and their pIs are acidic. At the amino acid level, they share high sequence similarity with GSTs in the banana DH-Pahang (AA group) genome. Phylogenetic analysis showed that the deduced amino acid sequences of MaGSTs also have high similarity to GSTs of other plant species. Expression analysis by semi-quantitative RT-PCR revealed that these genes are differentially expressed in various tissues. In addition, their expression is regulated by various stress conditions, including exposure to signaling molecules, cold, salinity, drought and Fusarium oxysporum f specialis(f. Sp) cubense Tropical Race 4 (Foc TR4) infection. The expression of the tau class MaGSTs (MaGSTU1, MaGSTU2 and MaGSTU3) mainly responded to cold, salinity and drought while MaGSTF1 and MaGSTL1 expressions were upregulated by signaling molecules. Our findings suggest that MaGSTs play a key role in both development and abiotic stress responses.
    Matched MeSH terms: Plant Proteins/genetics
  20. Wong GR, Mazumdar P, Lau SE, Harikrishna JA
    J Plant Physiol, 2018 Dec;231:219-233.
    PMID: 30292098 DOI: 10.1016/j.jplph.2018.09.018
    Genetic improvement is an important approach for crop improvement towards yield stability in stress-prone areas. Functional analysis of candidate stress response genes can provide key information to allow the selection and modification of improved crop varieties. In this study, the constitutive expression of a banana cDNA, MaRHD3 in Arabidopsis improved the ability of transgenic lines to adapt to drought conditions. Transgenic Arabidopsis plants expressing MaRHD3 had roots with enhanced branching and more root hairs when challenged with drought stress. The MaRHD3 plants had higher biomass accumulation, higher relative water content, higher chlorophyll content and an increase in activity of reactive oxygen species (ROS) scavenging enzymes; SOD, CAT, GR, POD and APX with reduced water loss rates compared to control plants. The analysis of oxidative damage indicated lower cell membrane damage in transgenic lines compared to control plants. These findings, together with data from higher expression of ABF-3 and higher ABA content of drought-stressed transgenic MaRHD3 expressing plants, support the involvement of the ABA signal pathway and ROS scavenging enzyme systems in MaRHD3 mediated drought tolerance.
    Matched MeSH terms: Plant Proteins/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links