Displaying publications 81 - 100 of 110 in total

Abstract:
Sort:
  1. Kurimoto E, Suzuki M, Amemiya E, Yamaguchi Y, Nirasawa S, Shimba N, et al.
    J Biol Chem, 2007 Nov 16;282(46):33252-33256.
    PMID: 17895249 DOI: 10.1074/jbc.C700174200
    Curculin isolated from Curculigo latifolia, a plant grown in Malaysia, has an intriguing property of modifying sour taste into sweet taste. In addition to this taste-modifying activity, curculin itself elicits a sweet taste. Although these activities have been attributed to the heterodimeric isoform and not homodimers of curculin, the underlying mechanisms for the dual action of this protein have been largely unknown. To identify critical sites for these activities, we performed a mutational and structural study of recombinant curculin. Based on the comparison of crystal structures of curculin homo- and heterodimers, a series of mutants was designed and subjected to tasting assays. Mapping of amino acid residues on the three-dimensional structure according to their mutational effects revealed that the curculin heterodimer exhibits sweet-tasting and taste-modifying activities through its partially overlapping but distinct molecular surfaces. These findings suggest that the two activities of the curculin heterodimer are expressed through its two different modes of interactions with the T1R2-T1R3 heterodimeric sweet taste receptor.
    Matched MeSH terms: Plant Proteins/metabolism
  2. Peramuna A, Bae H, Quiñonero López C, Fromberg A, Petersen B, Simonsen HT
    PLoS One, 2020;15(12):e0243620.
    PMID: 33284858 DOI: 10.1371/journal.pone.0243620
    Plant-derived terpenoids are extensively used in perfume, food, cosmetic and pharmaceutical industries, and several attempts are being made to produce terpenes in heterologous hosts. Native hosts have evolved to accumulate large quantities of terpenes in specialized cells. However, heterologous cells lack the capacity needed to produce and store high amounts of non-native terpenes, leading to reduced growth and loss of volatile terpenes by evaporation. Here, we describe how to direct the sesquiterpene patchoulol production into cytoplasmic lipid droplets (LDs) in Physcomitrium patens (syn. Physcomitrella patens), by attaching patchoulol synthase (PTS) to proteins linked to plant LD biogenesis. Three different LD-proteins: Oleosin (PpOLE1), Lipid Droplet Associated Protein (AtLDAP1) and Seipin (PpSeipin325) were tested as anchors. Ectopic expression of PTS increased the number and size of LDs, implying an unknown mechanism between heterologous terpene production and LD biogenesis. The expression of PTS physically linked to Seipin increased the LD size and the retention of patchoulol in the cell. Overall, the expression of PTS was lower in the anchored mutants than in the control, but when normalized to the expression the production of patchoulol was higher in the seipin-linked mutants.
    Matched MeSH terms: Plant Proteins/metabolism
  3. Tan TC, Cheng LH, Bhat R, Rusul G, Easa AM
    Food Chem, 2014 Jan 1;142:121-8.
    PMID: 24001821 DOI: 10.1016/j.foodchem.2013.07.040
    Composition, physicochemical properties and enzyme inactivation kinetics of coconut water were compared between immature (IMC), mature (MC) and overly-mature coconuts (OMC). Among the samples studied, pH, turbidity and mineral contents for OMC water was the highest, whereas water volume, titratable acidity, total soluble solids and total phenolics content for OMC water were the lowest. Maturity was found to affect sugar contents. Sucrose content was found to increase with maturity, and the reverse trend was observed for fructose and glucose. Enzyme activity assessment showed that polyphenol oxidase (PPO) in all samples was more heat resistant than peroxidase (POD). Compared to IMC and MC, PPO and POD from OMC water showed the lowest thermal resistance, with D83.3°C=243.9s (z=27.9°C), and D83.3°C=129.9s (z=19.5°C), respectively.
    Matched MeSH terms: Plant Proteins/metabolism
  4. Ho CL
    Genomics, 2020 03;112(2):1536-1544.
    PMID: 31494197 DOI: 10.1016/j.ygeno.2019.09.002
    Red algae are a major source of marine sulfated galactans. In this study, orthologs and inparalogs from seven red algae were analyzed and compared with the aim to discover differences in algal galactan biosynthesis and related pathways of these algae. Red algal orthologs for putative carbohydrate sulfotransferases were found to be prevalent in Porphyridium purpureum, Florideophytes and Bangiophytes, while red algal orthologs for putative chondroitin sulfate synthases, sulfurylases, and porphyranases /carrageenases were found exclusively in Florideophytes and Bangiophytes. The acquirement of these genes could have happened after the divergence from Cyanidiales red algae. Cyanidiales red algae were found to have more number and types of putative sulfate permeases, suggesting that these genes could have been acquired in adaptation to the environmental stresses and biogeochemistry of respective habitats. The findings of this study shed lights on the evolution of different homeostasis mechanisms by the early and late diverging red algal orders.
    Matched MeSH terms: Plant Proteins/metabolism
  5. Khanahmadi S, Yusof F, Chyuan Ong H, Amid A, Shah H
    J Biotechnol, 2016 Aug 10;231:95-105.
    PMID: 27184429 DOI: 10.1016/j.jbiotec.2016.05.015
    Enzymatic reactions involving lipases as catalyst in transesterification can be an excellent alternative to produce environmental-friendly biodiesel. In this study, lipase extracted from Cocoa Pod Husk (CPH) and immobilized through cross linked enzyme aggregate (CLEA) technology catalysed the transesterification of Jatropha curcas oil successfully. Face centered central composite design (FCCCD) under response surface methodology (RSM) was used to get the optimal conditions of 3% (w/w) enzyme loading, 4h reaction time and 1:6 oil/ethanol ratio to achieve the highest conversion of free fatty acid and glycerides into biodiesel (93%). The reusability of CLEA-lipase was tested and after seven cycles, the conversion percentage reduced to 58%. The results revealed that CLEA lipase from CPH is a potential catalyst for biodiesel production.
    Matched MeSH terms: Plant Proteins/metabolism
  6. Kalhori N, Nulit R, Go R
    Protein J, 2013 Oct;32(7):551-9.
    PMID: 24132392 DOI: 10.1007/s10930-013-9516-z
    Pentose phosphate pathway (PPP) composed of two functionally-connected phases, the oxidative and non-oxidative phase. Both phases catalysed by a series of enzymes. Transketolase is one of key enzymes of non-oxidative phase in which transfer two carbon units from fructose-6-phosphate to erythrose-4-phosphate and convert glyceraldehyde-3-phosphate to xylulose-5-phosphate. In plant, erythrose-4-phosphate enters the shikimate pathway which is produces many secondary metabolites such as aromatic amino acids, flavonoids, lignin. Although transketolase in plant system is important, study of this enzyme is still limited. Until to date, TKT genes had been isolated only from seven plants species, thus, the aim of present study to isolate, study the similarity and phylogeny of transketolase from sugarcane. Unlike bacteria, fungal and animal, PPP is complete in the cytosol and all enzymes are found cytosolic. However, in plant, the oxidative phase found localised in the cytosol but the sub localisation for non-oxidative phase might be restricted to plastid. Thus, this study was conducted to determine subcellular localization of sugarcane transketolase. The isolation of sugarcane TKT was done by reverse transcription polymerase chain reaction, followed by cloning into pJET1.2 vector and sequencing. This study has isolated 2,327 bp length of sugarcane TKT. The molecular phylogenetic tree analysis found that transketolase from sugarcane and Zea mays in one group. Classification analysis found that both plants showed closer relationship due to both plants in the same taxon i.e. family Poaceae. Target P 1.1 and Chloro P predicted that the compartmentation of sugarcane transketolase is localised in the chloroplast which is 85 amino acids are plant plastid target sequence. This led to conclusion that the PPP is incomplete in the cytosol of sugarcane. This study also found that the similarity sequence of sugarcane TKT closely related with the taxonomy plants.
    Matched MeSH terms: Plant Proteins/metabolism
  7. Wang LY, Wang YS, Cheng H, Zhang JP, Yeok FS
    Ecotoxicology, 2015 Oct;24(7-8):1705-13.
    PMID: 26044931 DOI: 10.1007/s10646-015-1502-0
    Chitinases in terrestrial plants have been reported these are involved in heavy metal tolerance/detoxification. This is the first attempt to reveal chitinase gene (AcCHI I) and its function on metal detoxification in mangroves Aegiceras corniculatum. RT-PCR and RACE techniques were used to clone AcCHI I, while real-time quantitative PCR was employed to assess AcCHI I mRNA expressions in response to Cadmium (Cd). The deduced AcCHI I protein consists of 316 amino acids, including a signal peptide region, a chitin-binding domain (CBD) and a catalytic domain. Protein homology modeling was performed to identify potential features in AcCHI I. The CBD structure of AcCHI I might be critical for metal tolerance/homeostasis of the plant. Clear tissue-specific differences in AcCHI I expression were detected, with higher transcript levels detected in leaves. Results demonstrated that a short duration of Cd exposure (e.g., 3 days) promoted AcCHI I expression in roots. Upregulated expression was also detected in leaves under 10 mg/kg Cd concentration stress. The present study demonstrates that AcCHI I may play an important role in Cd tolerance/homeostasis in the plant. Further studies of the AcCHI I protein, gene overexpression, the promoter and upstream regulation will be necessary for clarifying the functions of AcCHI I.
    Matched MeSH terms: Plant Proteins/metabolism
  8. Kwan YM, Meon S, Ho CL, Wong MY
    J Plant Physiol, 2015 Feb 01;174:131-6.
    PMID: 25462975 DOI: 10.1016/j.jplph.2014.10.003
    Nitric oxide associated 1 (NOA1) protein is implicated in plant disease resistance and nitric oxide (NO) biosynthesis. A full-length cDNA encoding of NOA1 protein from oil palm (Elaeis guineensis) was isolated and designated as EgNOA1. Sequence analysis suggested that EgNOA1 was a circular permutated GTPase with high similarity to the bacterial YqeH protein of the YawG/YlqF family. The gene expression of EgNOA1 and NO production in oil palm root tissues treated with Ganoderma boninense, the causal agent of basal stem rot (BSR) disease were profiled to investigate the involvement of EgNOA1 during fungal infection and association with NO biosynthesis. Real-time PCR (qPCR) analysis revealed that the transcript abundance of EgNOA1 in root tissues was increased by G. boninense treatment. NO burst in Ganoderma-treated root tissue was detected using Griess reagent, in advance of the up-regulation of the EgNOA1 transcript. This indicates that NO production was independent of EgNOA1. However, the induced expression of EgNOA1 in Ganoderma-treated root tissues implies that it might be involved in plant defense responses against pathogen infection.
    Matched MeSH terms: Plant Proteins/metabolism
  9. Ong SS, Wickneswari R
    PLoS One, 2012;7(11):e49662.
    PMID: 23251324 DOI: 10.1371/journal.pone.0049662
    MicroRNAs (miRNAs) play critical regulatory roles by acting as sequence specific guide during secondary wall formation in woody and non-woody species. Although thousands of plant miRNAs have been sequenced, there is no comprehensive view of miRNA mediated gene regulatory network to provide profound biological insights into the regulation of xylem development. Herein, we report the involvement of six highly conserved amg-miRNA families (amg-miR166, amg-miR172, amg-miR168, amg-miR159, amg-miR394, and amg-miR156) as the potential regulatory sequences of secondary cell wall biosynthesis. Within this highly conserved amg-miRNA family, only amg-miR166 exhibited strong differences in expression between phloem and xylem tissue. The functional characterization of amg-miR166 targets in various tissues revealed three groups of HD-ZIP III: ATHB8, ATHB15, and REVOLUTA which play pivotal roles in xylem development. Although these three groups vary in their functions, -psRNA target analysis indicated that miRNA target sequences of the nine different members of HD-ZIP III are always conserved. We found that precursor structures of amg-miR166 undergo exhaustive sequence variation even within members of the same family. Gene expression analysis showed three key lignin pathway genes: C4H, CAD, and CCoAOMT were upregulated in compression wood where a cascade of miRNAs was downregulated. This study offers a comprehensive analysis on the involvement of highly conserved miRNAs implicated in the secondary wall formation of woody plants.
    Matched MeSH terms: Plant Proteins/metabolism
  10. Teh OK, Ramli US
    Mol Biotechnol, 2011 Jun;48(2):97-108.
    PMID: 21113689 DOI: 10.1007/s12033-010-9350-x
    As the world population grows, the demand for food increases. Although vegetable oils provide an affordable and rich source of energy, the supply of vegetable oils available for human consumption is limited by the "fuel vs food" debate. To increase the nutritional value of vegetable oil, metabolic engineering may be used to produce oil crops of desirable fatty acid composition. We have isolated and characterized β-ketoacyl ACP-synthase II (KASII) cDNA from a high-oleic acid palm, Jessenia bataua. Jessenia KASII (JbKASII) encodes a 488-amino acid polypeptide that possesses conserved domains that are necessary for condensing activities. When overexpressed in E. coli, recombinant His-tagged JbKASII was insoluble and non-functional. However, Arabidopsis plants expressing GFP-JbKASII fusions had elevated levels of arachidic acid (C20:0) and erucic acid (C22:1) at the expense of stearic acid (C18:0) and oleic acid (C18:1). Furthermore, JbKASII failed to complement the Arabidopsis KASII mutant, fab1-2. This suggests that the substrate specificity of JbKASII is similar to that of ketoacyl-CoA synthase (KCS), which preferentially elongates stearic and oleic acids, and not palmitic acid. Our results suggest that the KCS-like JbKASII may elongate C18:0 and C18:1 to yield C20:0 and C22:1, respectively. JbKASII may, therefore, be an interesting candidate gene for promoting the production of very long chain fatty acids in transgenic oil crops.
    Matched MeSH terms: Plant Proteins/metabolism*
  11. Amiruddin N, Chan PL, Azizi N, Morris PE, Chan KL, Ong PW, et al.
    Plant Cell Physiol, 2020 Apr 01;61(4):735-747.
    PMID: 31883014 DOI: 10.1093/pcp/pcz237
    Acyl-CoA-binding proteins (ACBPs) are involved in binding and trafficking acyl-CoA esters in eukaryotic cells. ACBPs contain a well-conserved acyl-CoA-binding domain. Their various functions have been characterized in the model plant Arabidopsis and, to a lesser extent, in rice. In this study, genome-wide detection and expression analysis of ACBPs were performed on Elaeis guineensis (oil palm), the most important oil crop in the world. Seven E. guineensis ACBPs were identified and classified into four groups according to their deduced amino acid domain organization. Phylogenetic analysis showed conservation of this family with other higher plants. All seven EgACBPs were expressed in most tissues while their differential expression suggests various functions in specific tissues. For example, EgACBP3 had high expression in inflorescences and stalks while EgACBP1 showed strong expression in leaves. Because of the importance of E. guineensis as an oil crop, expression of EgACBPs was specifically examined during fruit development. EgACBP3 showed high expression throughout mesocarp development, while EgACBP1 had enhanced expression during rapid oil synthesis. In endosperm, both EgACBP1 and EgACBP3 exhibited increased expression during seed development. These results provide important information for further investigations on the biological functions of EgACBPs in various tissues and, in particular, their roles in oil synthesis.
    Matched MeSH terms: Plant Proteins/metabolism
  12. Chen J, Jiang C, Huang H, Wei S, Huang Z, Wang H, et al.
    Pestic Biochem Physiol, 2017 Nov;143:201-206.
    PMID: 29183593 DOI: 10.1016/j.pestbp.2017.09.012
    The evolution of weed-resistant species threatens the sustainable use of glyphosate, which is the most important herbicide widely used in agriculture worldwide. Moreover, the high glyphosate resistance (>180-fold based on LD50) of Eleusine indica found in Malaysia, which carries a double mutation in its 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), made the control of this species more difficult. By contrast, the same species carrying the same double mutation in EPSPS (T102I+P106S) but found in China only shows a resistance level of not more than 14-fold based on GR50. The resistance level of this population is four times higher than that of the population carrying a single mutation (P106L). Although the members of this population survive under a high glyphosate dosage of 10,080gaeha-1, their growth was significantly inhibited by glyphosate under the recommend dose (840gaeha-1), where in the fresh weight was 85.4% of the control. EPSPS expression, relative copy number, and EPSPS activity in this population were similar to those of the susceptible population. In addition, the expression of two glutathione transferase (GST) genes (GST-U8 and GST-23) and the enzyme activity of the GST in this population did not significantly differ from those of the susceptible population. This finding is important in elucidating the resistance of the naturally evolved glyphosate-resistant (GR) weed species carrying a double mutation in EPSPS to glyphosate.
    Matched MeSH terms: Plant Proteins/metabolism
  13. Wang D, Samsulrizal NH, Yan C, Allcock NS, Craigon J, Blanco-Ulate B, et al.
    Plant Physiol, 2019 02;179(2):544-557.
    PMID: 30459263 DOI: 10.1104/pp.18.01187
    Tomato (Solanum lycopersicum) is a globally important crop with an economic value in the tens of billions of dollars, and a significant supplier of essential vitamins, minerals, and phytochemicals in the human diet. Shelf life is a key quality trait related to alterations in cuticle properties and remodeling of the fruit cell walls. Studies with transgenic tomato plants undertaken over the last 20 years have indicated that a range of pectin-degrading enzymes are involved in cell wall remodeling. These studies usually involved silencing of only a single gene and it has proved difficult to compare the effects of silencing these genes across the different experimental systems. Here we report the generation of CRISPR-based mutants in the ripening-related genes encoding the pectin-degrading enzymes pectate lyase (PL), polygalacturonase 2a (PG2a), and β-galactanase (TBG4). Comparison of the physiochemical properties of the fruits from a range of PL, PG2a, and TBG4 CRISPR lines demonstrated that only mutations in PL resulted in firmer fruits, although mutations in PG2a and TBG4 influenced fruit color and weight. Pectin localization, distribution, and solubility in the pericarp cells of the CRISPR mutant fruits were investigated using the monoclonal antibody probes LM19 to deesterified homogalacturonan, INRA-RU1 to rhamnogalacturonan I, LM5 to β-1,4-galactan, and LM6 to arabinan epitopes, respectively. The data indicate that PL, PG2a, and TBG4 act on separate cell wall domains and the importance of cellulose microfibril-associated pectin is reflected in its increased occurrence in the different mutant lines.
    Matched MeSH terms: Plant Proteins/metabolism
  14. Hossain MA, Rana MM, Kimura Y, Roslan HA
    Biomed Res Int, 2014;2014:232969.
    PMID: 25136564 DOI: 10.1155/2014/232969
    As a part of the study to explore the possible strategy for enhancing the shelf life of mango fruits, we investigated the changes in biochemical parameters and activities of ripening associated enzymes of Ashwina hybrid mangoes at 4-day regular intervals during storage at -10°C, 4°C, and 30 ± 1°C. Titratable acidity, vitamin C, starch content, and reducing sugar were higher at unripe state and gradually decreased with the increasing of storage time at all storage temperatures while phenol content, total soluble solid, total sugar, and nonreducing sugar contents gradually increased. The activities of amylase, α-mannosidase, α-glucosidase, and invertase increased sharply within first few days and decreased significantly in the later stage of ripening at 30 ± 1°C. Meanwhile polyphenol oxidase, β-galactosidase, and β-hexosaminidase predominantly increased significantly with the increasing days of storage till later stage of ripening. At -10°C and 4°C, the enzymes as well as carbohydrate contents of storage mango changed slightly up to 4 days and thereafter the enzyme became fully dormant. The results indicated that increase in storage temperature and time correlated with changes in biochemical parameters and activities of glycosidases suggested the suppression of β-galactosidase and β-hexosaminidase might enhance the shelf life of mango fruits.
    Matched MeSH terms: Plant Proteins/metabolism*
  15. Liew YJM, Lee YK, Khalid N, Rahman NA, Tan BC
    Mol Biotechnol, 2021 Apr;63(4):316-326.
    PMID: 33565047 DOI: 10.1007/s12033-021-00304-z
    Prenylation of aromatic natural products by membrane-bound prenyltransferases (PTs) is an important biosynthesis step of many bioactive compounds. At present, only a few plant flavonoid-related PT genes have been functionally characterized, mainly due to the difficulties of expressing these membrane proteins. Rapid and effective methods to produce functional plant membrane proteins are thus indispensable. Here, we evaluated expression systems through cell-based and cell-free approaches to express Boesenbergia rotunda BrPT2 encoding a membrane-bound prenyltransferase. We attempted to express BrPT2 in Escherichia coli and tobacco plants but failed to detect this protein using the Western-blot technique, whereas an intact single band of 43 kDa was detected when BrPT2 was expressed using a cell-free protein synthesis system (PURE). Under in vitro enzymatic condition, the synthesized BrPT2 successfully catalyzed pinostrobin chalcone to pinostrobin. Molecular docking analysis showed that pinostrobin chalcone interacts with BrPT2 at two cavities: (1) the main binding site at the central cavity and (2) the allosteric binding site located away from the central cavity. Our findings suggest that cell-free protein synthesis could be an alternative for rapid production of valuable difficult-to-express membrane proteins.
    Matched MeSH terms: Plant Proteins/metabolism
  16. Hussain A, Khan MI, Albaqami M, Mahpara S, Noorka IR, Ahmed MAA, et al.
    Int J Mol Sci, 2021 Nov 08;22(21).
    PMID: 34769521 DOI: 10.3390/ijms222112091
    The WRKY transcription factors (TFs) network is composed of WRKY TFs' subset, which performs a critical role in immunity regulation of plants. However, functions of WRKY TFs' network remain unclear, particularly in non-model plants such as pepper (Capsicum annuum L.). This study functionally characterized CaWRKY30-a member of group III Pepper WRKY protein-for immunity of pepper against Ralstonia solanacearum infection. The CaWRKY30 was detected in nucleus, and its transcriptional expression levels were significantly upregulated by R. solanacearum inoculation (RSI), and foliar application ethylene (ET), abscisic acid (ABA), and salicylic acid (SA). Virus induced gene silencing (VIGS) of CaWRKY30 amplified pepper's vulnerability to RSI. Additionally, the silencing of CaWRKY30 by VIGS compromised HR-like cell death triggered by RSI and downregulated defense-associated marker genes, like CaPR1, CaNPR1, CaDEF1, CaABR1, CaHIR1, and CaWRKY40. Conversely, transient over-expression of CaWRKY30 in pepper leaves instigated HR-like cell death and upregulated defense-related maker genes. Furthermore, transient over-expression of CaWRKY30 upregulated transcriptional levels of CaWRKY6, CaWRKY22, CaWRKY27, and CaWRKY40. On the other hand, transient over-expression of CaWRKY6, CaWRKY22, CaWRKY27, and CaWRKY40 upregulated transcriptional expression levels of CaWRKY30. The results recommend that newly characterized CaWRKY30 positively regulates pepper's immunity against Ralstonia attack, which is governed by synergistically mediated signaling by phytohormones like ET, ABA, and SA, and transcriptionally assimilating into WRKY TFs networks, consisting of CaWRKY6, CaWRKY22, CaWRKY27, and CaWRKY40. Collectively, our data will facilitate to explicate the underlying mechanism of crosstalk between pepper's immunity and response to RSI.
    Matched MeSH terms: Plant Proteins/metabolism*
  17. Shaipulah NF, Muhlemann JK, Woodworth BD, Van Moerkercke A, Verdonk JC, Ramirez AA, et al.
    Plant Physiol, 2016 Feb;170(2):717-31.
    PMID: 26620524 DOI: 10.1104/pp.15.01646
    Anthocyanins and volatile phenylpropenes (isoeugenol and eugenol) in petunia (Petunia hybrida) flowers have the precursor 4-coumaryl coenzyme A (CoA) in common. These phenolics are produced at different stages during flower development. Anthocyanins are synthesized during early stages of flower development and sequestered in vacuoles during the lifespan of the flowers. The production of isoeugenol and eugenol starts when flowers open and peaks after anthesis. To elucidate additional biochemical steps toward (iso)eugenol production, we cloned and characterized a caffeoyl-coenzyme A O-methyltransferase (PhCCoAOMT1) from the petals of the fragrant petunia 'Mitchell'. Recombinant PhCCoAOMT1 indeed catalyzed the methylation of caffeoyl-CoA to produce feruloyl CoA. Silencing of PhCCoAOMT1 resulted in a reduction of eugenol production but not of isoeugenol. Unexpectedly, the transgenic plants had purple-colored leaves and pink flowers, despite the fact that cv Mitchell lacks the functional R2R3-MYB master regulator ANTHOCYANIN2 and has normally white flowers. Our results indicate that down-regulation of PhCCoAOMT1 activated the anthocyanin pathway through the R2R3-MYBs PURPLE HAZE (PHZ) and DEEP PURPLE, with predominantly petunidin accumulating. Feeding cv Mitchell flowers with caffeic acid induced PHZ expression, suggesting that the metabolic perturbation of the phenylpropanoid pathway underlies the activation of the anthocyanin pathway. Our results demonstrate a role for PhCCoAOMT1 in phenylpropene production and reveal a link between PhCCoAOMT1 and anthocyanin production.
    Matched MeSH terms: Plant Proteins/metabolism
  18. Khew CY, Teo CJ, Chan WS, Wong HL, Namasivayam P, Ho CL
    J Plant Physiol, 2015 Jun 15;182:23-32.
    PMID: 26037695 DOI: 10.1016/j.jplph.2015.05.003
    Brassinosteroid Insensitive 1 (BRI1)-Associated Kinase I (BAK1) has been reported to interact with BRI1 for brassinosteroid (BR) perception and signal transduction that regulate plant growth and development. The aim of this study is to investigate the functions of a rice OsBAK1 homologue, designated as OsI-BAK1, which is highly expressed after heading. Silencing of OsI-BAK1 in rice plants produced a high number of undeveloped green and unfilled grains compared to the untransformed plants. Histological analyses demonstrated that embryos were either absent or retarded in their development in these unfilled rice grains of OsI-BAK1 RNAi plants. Down regulation of OsI-BAK1 caused a reduction in cell number and enlargement in leaf bulliform cells. Furthermore, transgenic rice plants overexpressing OsI-BAK1 were demonstrated to have corrugated and twisted leaves probably due to increased cell number that caused abnormal bulliform cell structure which were enlarged and plugged deep into leaf epidermis. The current findings suggest that OsI-BAK1 may play an important role in the developmental processes of rice grain filling and leaf cell including the bulliform cells.
    Matched MeSH terms: Plant Proteins/metabolism
  19. Heskes AM, Sundram TCM, Boughton BA, Jensen NB, Hansen NL, Crocoll C, et al.
    Plant J, 2018 03;93(5):943-958.
    PMID: 29315936 DOI: 10.1111/tpj.13822
    Vitex agnus-castus L. (Lamiaceae) is a medicinal plant historically used throughout the Mediterranean region to treat menstrual cycle disorders, and is still used today as a clinically effective treatment for premenstrual syndrome. The pharmaceutical activity of the plant extract is linked to its ability to lower prolactin levels. This feature has been attributed to the presence of dopaminergic diterpenoids that can bind to dopamine receptors in the pituitary gland. Phytochemical analyses of V. agnus-castus show that it contains an enormous array of structurally related diterpenoids and, as such, holds potential as a rich source of new dopaminergic drugs. The present work investigated the localisation and biosynthesis of diterpenoids in V. agnus-castus. With the assistance of matrix-assisted laser desorption ionisation-mass spectrometry imaging (MALDI-MSI), diterpenoids were localised to trichomes on the surface of fruit and leaves. Analysis of a trichome-specific transcriptome database, coupled with expression studies, identified seven candidate genes involved in diterpenoid biosynthesis: three class II diterpene synthases (diTPSs); three class I diTPSs; and a cytochrome P450 (CYP). Combinatorial assays of the diTPSs resulted in the formation of a range of different diterpenes that can account for several of the backbones of bioactive diterpenoids observed in V. agnus-castus. The identified CYP, VacCYP76BK1, was found to catalyse 16-hydroxylation of the diol-diterpene, peregrinol, to labd-13Z-ene-9,15,16-triol when expressed in Saccharomyces cerevisiae. Notably, this product is a potential intermediate in the biosynthetic pathway towards bioactive furan- and lactone-containing diterpenoids that are present in this species.
    Matched MeSH terms: Plant Proteins/metabolism*
  20. Chee MJ, Lycett GW, Khoo TJ, Chin CF
    Mol Biotechnol, 2017 Jan;59(1):1-8.
    PMID: 27826796 DOI: 10.1007/s12033-016-9986-2
    Production of vanillin by bioengineering has gained popularity due to consumer demand toward vanillin produced by biological systems. Natural vanillin from vanilla beans is very expensive to produce compared to its synthetic counterpart. Current bioengineering works mainly involve microbial biotechnology. Therefore, alternative means to the current approaches are constantly being explored. This work describes the use of vanillin synthase (VpVAN), to bioconvert ferulic acid to vanillin in a plant system. The VpVAN enzyme had been shown to directly convert ferulic acid and its glucoside into vanillin and its glucoside, respectively. As the ferulic acid precursor and vanillin were found to be the intermediates in the phenylpropanoid biosynthetic pathway of Capsicum species, this work serves as a proof-of-concept for vanillin production using Capsicum frutescens (C. frutescens or hot chili pepper). The cells of C. frutescens were genetically transformed with a codon optimized VpVAN gene via biolistics. Transformed explants were selected and regenerated into callus. Successful integration of the gene cassette into the plant genome was confirmed by polymerase chain reaction. High-performance liquid chromatography was used to quantify the phenolic compounds detected in the callus tissues. The vanillin content of transformed calli was 0.057% compared to 0.0003% in untransformed calli.
    Matched MeSH terms: Plant Proteins/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links