Displaying publications 81 - 100 of 261 in total

Abstract:
Sort:
  1. Rohela M, Jamaiah I, Menon J, Rachel J
    PMID: 15916055
    Fasciolopsiasis is a disease caused by the largest intestinal fluke, Fasciolopsis buski. The disease is endemic in the Far East and Southeast Asia. Human acquires the infection after eating raw freshwater plants contaminated with the infective metacercariae. There has been no report of fasciolopsiasis either in man or in animal in Malaysia. We are reporting the first case of fasciolopsiasis in Malaysia in a 39-year-old female farmer, a native of Sabah (East Malaysia). This patient complained of cough and fever for a duration of two weeks, associated with loss of appetite and loss of weight. She had no history of traveling overseas. Physical examination showed pallor, multiple cervical and inguinal lymph nodes and hepatosplenomegaly. Laboratory investigations showed that she had iron deficiency anemia. There was leukocytosis and a raised ESR. Lymph node biopsy revealed a caseating granuloma. Stool examination was positive for the eggs of Fasciolopsis buski. The eggs measure 140 x 72.5 microm and are operculated. In this case, the patient did not present with symptoms suggestive of any intestinal parasitic infections. Detection of Fasciolopsis buski eggs in the stool was an incidental finding. She was diagnosed as a case of disseminated tuberculosis with fasciolopsiasis and was treated with antituberculosis drugs and praziquantel, respectively.
    Matched MeSH terms: Zoonoses
  2. Zamri-Saad M, Salmiyah TS, Jasni S, Cheng BY, Basri K
    Vet Rec, 1990 Nov 10;127(19):480.
    PMID: 2270639
    Matched MeSH terms: Zoonoses/transmission*
  3. Saeed N, Khoo CS, Remli R, Law ZK, Periyasamy P, Osman SS, et al.
    Front Neurol, 2018;9:966.
    PMID: 30564184 DOI: 10.3389/fneur.2018.00966
    Leptospirosis is a spirochetal zoonotic disease with a wide clinical spectrum, often underdiagnosed especially when presented as an acute neurological manifestation. We report a case of a 24-year-old man with serologically positive leptospirosis, who presented with altered sensorium, seizures and subsequently developed cortical blindness. His brain MRI revealed bilateral occipital and later parietal lobe cerebritis.
    Matched MeSH terms: Zoonoses
  4. Alyousefi NA, Mahdy MA, Lim YA, Xiao L, Mahmud R
    Parasitology, 2013 May;140(6):729-34.
    PMID: 23369243 DOI: 10.1017/S0031182012001953
    Cryptosporidium is a protozoan parasite of humans and animals and has a worldwide distribution. The parasite has a unique epidemiology in Middle Eastern countries where the IId subtype family of Cryptosporidium parvum dominates. However, there has been no information on Cryptosporidium species in Yemen. Thus, this study was conducted in Yemen to examine the distribution of Cryptosporidium species and subtype families. Fecal samples were collected from 335 patients who attended hospitals in Sana'a city. Cryptosporidium species were determined by PCR and sequence analysis of the 18 s rRNA gene. Cryptosporidium parvum and C. hominis subtypes were identified based on sequence analysis of the 60 kDa glycoprotein (gp60) gene. Out of 335 samples, 33 (9.9%) were positive for Cryptosporidium. Of them, 97% were identified as C. parvum whilst 1 case (3%) was caused by C. hominis. All 7 C. parvum isolates subtyped belonged to the IIaA15G2R1 subtype. The common occurrence of the zoonotic IIa subtype family of C. parvum highlights the potential occurrence of zoonotic transmission of cryptosporidiosis in Yemen. However, this postulation needs confirmation with future molecular epidemiological studies of cryptosporidiosis in both humans and animals in Yemen.
    Matched MeSH terms: Zoonoses
  5. Shekhar KC
    J R Soc Health, 1995 Jun;115(3):178-85.
    PMID: 7643345
    Food-borne parasitic zoonoses have emerged as a major public health problem in many countries and are posing a medical challenge. They are not only important from the economic point of view but also because of their severe sequelae. In Malaysia, these parasitoses are a tip of an iceberg problem. The article documents all the food-borne parasitic zoonoses reported in Malaysia. An epidemiological assessment of the diseases with research needs is highlighted.
    Matched MeSH terms: Zoonoses
  6. Mohamed Zahidi J, Ahmad N, Tay BY, Hashim R, Khoo E, Ahmad N, et al.
    Genome Announc, 2017 Aug 03;5(31).
    PMID: 28774972 DOI: 10.1128/genomeA.00689-17
    Human brucellosis is a neglected zoonotic disease and has widespread geographical distribution. Brucella melitensis has caused outbreaks and sporadic cases in Malaysia. Here, we present the whole-genome sequences of four B. melitensis strains isolated from brucellosis patients in Malaysia.
    Matched MeSH terms: Zoonoses
  7. Kilbourn AM, Karesh WB, Wolfe ND, Bosi EJ, Cook RA, Andau M
    J. Wildl. Dis., 2003 Jan;39(1):73-83.
    PMID: 12685070
    Baseline data on health of free-ranging wildlife is essential to evaluate impacts of habitat transformation and wildlife translocation, rehabilitation, and reintroduction programs. Health information on many species, especially great apes, is extremely limited. Between 1996 and 1998, 84 free-ranging orangutans captured for translocation, underwent a complete health evaluation. Analogous data were gathered from 60 semi-captive orangutans in Malaysia. Baseline hematology and serology; vitamin, mineral and pesticide levels; and results of health evaluations, including physical examination, provide a baseline for future monitoring. Free-ranging and semi-captive orangutans shared exposure to 11 of 47 viruses. The semi-captive orangutans had significantly higher prevalence of antibodies to adenovirus (P < 0.0005) and rota (SA 11) virus (P < 0.008). More free-ranging than semi-captive animals had antibodies to Japanese encephalitis virus (P < 0.08) and foamy virus (P = 0.05). Exposure to parainfluenza and langat viruses was detected exclusively in semi-captive animals and exposure to sinbis virus was only found in free-ranging orangutans. There was evidence of exposure to respiratory syncytial virus, coxsackie virus, dengue virus, and zika virus in both groups. Ebstein-Barr virus was ubiquitous in both groups. Prevalence of antibodies against mumps virus changed from 0% in 1996 to 45% in 1998. No antibodies were detected to many important zoonotic viral pathogens, including herpesvirus and hepatitis virus. Prevalence of Balantidium coli and Plasmodium pitheci infections and exposure to mycobacterium was higher in the semi-captive animals. Differences in exposure to pathogens between the groups may be due to environmental factors including differences in exposures to other species, habitat quality, nutritional status, and other potential stressors. Differences in health parameters between captive and free-ranging orangutans need to be considered when planning conservation areas, translocation procedures, and rehabilitation protocols. Because survival of the orangutan is linked to animal and ecosystem health, results of this study will assist wildlife conservation programs by providing baseline health information.
    Matched MeSH terms: Zoonoses
  8. Broder CC, Weir DL, Reid PA
    Vaccine, 2016 06 24;34(30):3525-34.
    PMID: 27154393 DOI: 10.1016/j.vaccine.2016.03.075
    Hendra virus (HeV) and Nipah virus (NiV) are zoonotic viruses that emerged in the mid to late 1990s causing disease outbreaks in livestock and people. HeV appeared in Queensland, Australia in 1994 causing a severe respiratory disease in horses along with a human case fatality. NiV emerged a few years later in Malaysia and Singapore in 1998-1999 causing a large outbreak of encephalitis with high mortality in people and also respiratory disease in pigs which served as amplifying hosts. The key pathological elements of HeV and NiV infection in several species of mammals, and also in people, are a severe systemic and often fatal neurologic and/or respiratory disease. In people, both HeV and NiV are also capable of causing relapsed encephalitis following recovery from an acute infection. The known reservoir hosts of HeV and NiV are several species of pteropid fruit bats. Spillovers of HeV into horses continue to occur in Australia and NiV has caused outbreaks in people in Bangladesh and India nearly annually since 2001, making HeV and NiV important transboundary biological threats. NiV in particular possesses several features that underscore its potential as a pandemic threat, including its ability to infect humans directly from natural reservoirs or indirectly from other susceptible animals, along with a capacity of limited human-to-human transmission. Several HeV and NiV animal challenge models have been developed which have facilitated an understanding of pathogenesis and allowed for the successful development of both active and passive immunization countermeasures.
    Matched MeSH terms: Zoonoses/prevention & control
  9. Westbury HA
    Rev. - Off. Int. Epizoot., 2000 Apr;19(1):151-9.
    PMID: 11189712
    The author provides an account of the discovery of a previously undescribed disease of horses and a description of the studies involved in determining the aetiology of the disease. The causative virus, now named Hendra virus (HeV), is the reference virus for a proposed new genus within the virus family Paramyxoviridae. The virus is a lethal zoonotic agent able to cause natural disease in humans and horses and experimentally induced disease in cats, guinea-pigs and mice. The virus also naturally infects species of the family Megachiroptera, mainly subclinically, and such animals are the natural host of HeV. The virus appears to transmit readily between species of Megachiroptera, but not readily between horses under natural and experimental conditions, or from horses to humans. The method of transmission from bats to horses is not known. Three incidents of HeV disease in horses have been recorded in Australia--two in 1994 which caused the death of two humans and fifteen horses and one in 1999 which involved the death of a single horse. Hendra virus is related to Nipah virus, the virus that caused disease and mortality in humans, pigs, dogs and cats in Malaysia during 1998 and 1999.
    Matched MeSH terms: Zoonoses/epidemiology; Zoonoses/transmission; Zoonoses/virology*
  10. Westbury H
    Vet J, 2000 Nov;160(3):165-6.
    PMID: 11061952
    Matched MeSH terms: Zoonoses/transmission; Zoonoses/virology*
  11. Mbu'u CM, Mbacham WF, Gontao P, Sado Kamdem SL, Nlôga AMN, Groschup MH, et al.
    Vector Borne Zoonotic Dis, 2019 07;19(7):455-465.
    PMID: 30985268 DOI: 10.1089/vbz.2018.2365
    Nipah virus (NiV) and Hendra virus (HeV) are closely related members within the genus Henipavirus, family Paramyxoviridae, for which fruit bats serve as the reservoir. The initial emergence of NiV infections in pigs and humans in Malaysia, and HeV infections in horses and humans in Australia, posed severe impacts on human and animal health, and continues threatening lives of humans and livestock within Southeast Asia and Australia. Recently, henipavirus-specific antibodies have also been detected in fruit bats in a number of sub-Saharan African countries and in Brazil, thereby considerably increasing the known geographic distribution of henipaviruses. Africa is progressively being recognized as a new high prevalence zone for henipaviruses, as deduced from serological and molecular evidence of past infections in Madagascar, Ghana, Republic of Congo, Gulf of Guinea, Zambia, Tanzania, Cameroon, and Nigeria lately. Serological data suggest henipavirus spillover from bats to livestock and human populations in Africa without reported clinical disease in any of these species. All virus isolation attempts have been abortive, highlighting the need for further investigations. The genome of the Ghanaian bat henipavirus designated Ghana virus (GhV), which was detected in a pteropid Eidolon helvum bat, is the only African henipavirus that has been completely sequenced limiting our current knowledge on the genetic diversity and pathogenesis of African henipaviruses. In this review, we summarize the available data on the circulation of henipaviruses in Africa, discuss potential sources for virus spillover, and highlight existing research gaps.
    Matched MeSH terms: Zoonoses/virology
  12. Field HE, Mackenzie JS, Daszak P
    PMID: 17848064
    Two related, novel, zoonotic paramyxoviruses have been described recently. Hendra virus was first reported in horses and thence humans in Australia in 1994; Nipah virus was first reported in pigs and thence humans in Malaysia in 1998. Human cases of Nipah virus infection, apparently unassociated with infection in livestock, have been reported in Bangladesh since 2001. Species of fruit bats (genus Pteropus) have been identified as natural hosts of both agents. Anthropogenic changes (habitat loss, hunting) that have impacted the population dynamics of Pteropus species across much of their range are hypothesised to have facilitated emergence. Current strategies for the management of henipaviruses are directed at minimising contact with the natural hosts, monitoring identified intermediate hosts, improving biosecurity on farms, and better disease recognition and diagnosis. Investigation of the emergence and ecology of henipaviruses warrants a broad, cross-disciplinary ecosystem health approach that recognises the critical linkages between human activity, ecological change, and livestock and human health.
    Matched MeSH terms: Zoonoses
  13. Hansen TA, Mollerup S, Nguyen NP, White NE, Coghlan M, Alquezar-Planas DE, et al.
    Emerg Microbes Infect, 2016 Aug 17;5(8):e90.
    PMID: 27530749 DOI: 10.1038/emi.2016.90
    Outbreaks of zoonotic diseases in humans and livestock are not uncommon, and an important component in containment of such emerging viral diseases is rapid and reliable diagnostics. Such methods are often PCR-based and hence require the availability of sequence data from the pathogen. Rattus norvegicus (R. norvegicus) is a known reservoir for important zoonotic pathogens. Transmission may be direct via contact with the animal, for example, through exposure to its faecal matter, or indirectly mediated by arthropod vectors. Here we investigated the viral content in rat faecal matter (n=29) collected from two continents by analyzing 2.2 billion next-generation sequencing reads derived from both DNA and RNA. Among other virus families, we found sequences from members of the Picornaviridae to be abundant in the microbiome of all the samples. Here we describe the diversity of the picornavirus-like contigs including near-full-length genomes closely related to the Boone cardiovirus and Theiler's encephalomyelitis virus. From this study, we conclude that picornaviruses within R. norvegicus are more diverse than previously recognized. The virome of R. norvegicus should be investigated further to assess the full potential for zoonotic virus transmission.
    Matched MeSH terms: Zoonoses
  14. Cooper JE
    Vet Rec, 2007 Aug 25;161(8):280.
    PMID: 17720972
    Matched MeSH terms: Zoonoses
  15. Tappe D, Abdullah S, Heo CC, Kannan Kutty M, Latif B
    Trop Biomed, 2013 Sep;30(3):355-66.
    PMID: 24189667
    Sarcocystosis, an unusual parasitic zoonotic disease, is caused by coccidian/ apicomplexan protozoa in humans and animals. The parasites usually develop in a heteroxenous predator-prey life-cycle involving final (carnivore) and intermediate (omnivore/herbivore) hosts. Besides the intestinal, non-invasive form of the disease in which humans and animals are the definitive hosts for certain Sarcocystis spp., the invasive form has come to recent attention. In the latter, humans and animals serve as intermediate host harbouring sarcocysts in their muscle tissue. Already in 1991 sarcocystosis was seen as a potential emerging food borne zoonosis in Malaysia, and in 2011 and 2012 the largest cluster of symptomatic human muscular sarcocystosis world-wide was reported from Tioman Island, Pahang state. In this review, we focus on invasive sarcocystosis in humans and animals in Malaysia, review the recorded cases and epidemiology, and present hypotheses.
    Matched MeSH terms: Zoonoses/epidemiology*; Zoonoses/parasitology; Zoonoses/pathology
  16. Fukuda M, Uni S, Igari T, Utsumi Y, Otsuka Y, Nakatani J, et al.
    Parasitol Int, 2019 Oct;72:101943.
    PMID: 31220633 DOI: 10.1016/j.parint.2019.101943
    A 73-year-old man living in Kawamata-machi, Fukushima Prefecture, Northeastern Honshu, Japan, visited a hospital with complaints of a subcutaneous swelling that had developed on the back of his left hand. The nodule was surgically removed from the vagina fibrosa tendinis of his left forefinger. Based on the histopathological characteristics, the causative agent of this nodule was identified as a female Onchocerca dewittei japonica (Spirurida: Onchocercidae). The species identification was confirmed by cox1 gene sequencing of the worm tissues from paraffin-embedded sections of the nodule. Although 11 cases of zoonotic onchocercosis have previously been recorded in Kyushu and Western Honshu, Japan, the present findings represent the first human case of infection with O. dewittei japonica in Northeastern Honshu, Japan.
    Matched MeSH terms: Zoonoses/parasitology; Zoonoses/transmission*
  17. Singh B, Daneshvar C
    Clin Microbiol Rev, 2013 Apr;26(2):165-84.
    PMID: 23554413 DOI: 10.1128/CMR.00079-12
    Plasmodium knowlesi is a malaria parasite that is found in nature in long-tailed and pig-tailed macaques. Naturally acquired human infections were thought to be extremely rare until a large focus of human infections was reported in 2004 in Sarawak, Malaysian Borneo. Human infections have since been described throughout Southeast Asia, and P. knowlesi is now recognized as the fifth species of Plasmodium causing malaria in humans. The molecular, entomological, and epidemiological data indicate that human infections with P. knowlesi are not newly emergent and that knowlesi malaria is primarily a zoonosis. Human infections were undiagnosed until molecular detection methods that could distinguish P. knowlesi from the morphologically similar human malaria parasite P. malariae became available. P. knowlesi infections cause a spectrum of disease and are potentially fatal, but if detected early enough, infections in humans are readily treatable. In this review on knowlesi malaria, we describe the early studies on P. knowlesi and focus on the epidemiology, diagnosis, clinical aspects, and treatment of knowlesi malaria. We also discuss the gaps in our knowledge and the challenges that lie ahead in studying the epidemiology and pathogenesis of knowlesi malaria and in the prevention and control of this zoonotic infection.
    Matched MeSH terms: Zoonoses/epidemiology*
  18. Hashim R, Ahmad N, Mohamed Zahidi J, Tay BY, Mohd Noor A, Zainal S, et al.
    Int J Microbiol, 2014;2014:596245.
    PMID: 25120569 DOI: 10.1155/2014/596245
    Brucellosis is a world-wide zoonotic disease with a major impact on the public health. Due to the high risk of laboratory acquired infection, limited laboratory investigations were performed on this organism, including detailed identification and susceptibility study. Brucella melitensis is the commonest aetiological agent for human brucellosis in this region. The in vitro susceptibility pattern against selected antimicrobial agents was assessed using E-test. All isolates were noted to be sensitive to all the antimicrobial agents tested except for rifampicin where elevated MIC > 1 μg/mL was noted in 30 out of 41 isolates tested.
    Matched MeSH terms: Zoonoses
  19. Lam TT, Jia N, Zhang YW, Shum MH, Jiang JF, Zhu HC, et al.
    Nature, 2020 07;583(7815):282-285.
    PMID: 32218527 DOI: 10.1038/s41586-020-2169-0
    The ongoing outbreak of viral pneumonia in China and across the world is associated with a new coronavirus, SARS-CoV-21. This outbreak has been tentatively associated with a seafood market in Wuhan, China, where the sale of wild animals may be the source of zoonotic infection2. Although bats are probable reservoir hosts for SARS-CoV-2, the identity of any intermediate host that may have facilitated transfer to humans is unknown. Here we report the identification of SARS-CoV-2-related coronaviruses in Malayan pangolins (Manis javanica) seized in anti-smuggling operations in southern China. Metagenomic sequencing identified pangolin-associated coronaviruses that belong to two sub-lineages of SARS-CoV-2-related coronaviruses, including one that exhibits strong similarity in the receptor-binding domain to SARS-CoV-2. The discovery of multiple lineages of pangolin coronavirus and their similarity to SARS-CoV-2 suggests that pangolins should be considered as possible hosts in the emergence of new coronaviruses and should be removed from wet markets to prevent zoonotic transmission.
    Matched MeSH terms: Zoonoses/virology
  20. Shuai L, Ge J, Wen Z, Wang J, Wang X, Bu Z
    Vet Microbiol, 2020 Feb;241:108549.
    PMID: 31928698 DOI: 10.1016/j.vetmic.2019.108549
    Nipah virus (NiV) is a re-emerging zoonotic pathogen that causes high mortality in humans and pigs. Oral immunization in free-roaming animals is one of the most practical approaches to prevent NiV pandemics. We previously generated a recombinant rabies viruses (RABV) Evelyn-Rokitnicki-Abelseth (ERA) strain, rERAG333E, which contains a mutation from arginine to glutamic acid at residue 333 of glycoprotein (G333E) and serves as an oral vaccine for dog rabies. In this study, we generated two recombinant RABVs, rERAG333E/NiVG and rERAG333E/NiVF, expressing the NiV Malaysian strain attachment glycoprotein (NiV-G) or fusion glycoprotein (NiV-F) gene based on the rERAG333E vector platform. Both rERAG333E/NiVG and rERAG333E/NiVF displayed growth properties similar to those of rERAG333E and caused marked syncytia formation after co-infection in BSR cell culture. Adult and suckling mice intracerebrally inoculated with the recombinant RABVs showed NiV-G and NiV-F expression did not increase the virulence of rERAG333E. Oral vaccination with rERAG333E/NiVG either singularly or combined with rERAG333E/NiVF induced significant NiV neutralizing antibody against NiV and RABV, and IgG to NiV-G or NiV-F in mice and pigs. rERAG333E/NiVG and rERAG333E/NiVF thus appeared to be suitable candidates for further oral vaccines for potential animal targets in endemic areas of NiV disease and rabies.
    Matched MeSH terms: Zoonoses
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links