Displaying publications 81 - 100 of 186 in total

Abstract:
Sort:
  1. El Habbash AI, Mohd Hashim N, Ibrahim MY, Yahayu M, Omer FAE, Abd Rahman M, et al.
    PeerJ, 2017;5:e3460.
    PMID: 28740747 DOI: 10.7717/peerj.3460
    Natural medicinal products possess diverse chemical structures and have been an essential source for drug discovery. Therefore, in this study, α-mangostin (AM) is a plant-derived compound was investigated for the apoptotic effect on human cervical cancer cells (HeLa). The cytotoxic effects of AM on the viability of HeLa and human normal ovarian cell line (SV40) were evaluated by using MTT assay. Results showed that AM inhibited HeLa cells viability at concentration- and time-dependent manner with IC50 value of 24.53 ± 1.48 µM at 24 h. The apoptogenic effects of AM on HeLa were assessed using fluorescence microscopy analysis. The effect of AM on cell proliferation was also studied through clonogenic assay. ROS production evaluation, flow cytometry (cell cycle) analysis, caspases 3/7, 8, and 9 assessment and multiple cytotoxicity assays were conducted to determine the mechanism of cell apoptosis. This was associated with G2/M phase cell cycle arrest and elevation in ROS production. AM induced mitochondrial apoptosis which was confirmed based on the significant increase in the levels of caspases 3/7 and 9 in a dose-dependent manner. Furthermore, the MMP disruption and increased cell permeability, concurrent with cytochrome c release from the mitochondria to the cytosol provided evidence that AM can induce apoptosis via mitochondrial-dependent pathway. AM exerted a remarkable antitumor effect and induced characteristic apoptogenic morphological changes on HeLa cells, which indicates the occurrence of cell death. This study reveals that AM could be a potential antitumor compound on cervical cancer in vitro and can be considered for further cervical cancer preclinical and in vivo testing.
    Matched MeSH terms: Flow Cytometry
  2. Yap HYY, Tan NH, Ng ST, Tan CS, Fung SY
    PeerJ, 2018;6:e4940.
    PMID: 29888137 DOI: 10.7717/peerj.4940
    Background: The highly valued medicinal tiger milk mushroom (also known as Lignosus rhinocerus) has the ability to cure numerous ailments. Its anticancer activities are well explored, and recently a partially purified cytotoxic protein fraction termed F5 from the mushroom's sclerotial cold water extract consisting mainly of fungal serine proteases was found to exhibit potent selective cytotoxicity against a human breast adenocarcinoma cell line (MCF7) with IC50 value of 3.00 μg/ml. However, characterization of its cell death-inducing activity has yet to be established.

    Methods: The mechanism involved in the cytotoxic activities of F5 against MCF7 cells was elucidated by flow cytometry-based apoptosis detection, caspases activity measurement, and expression profiling of apoptosis markers by western blotting. Molecular attributes of F5 were further mined from L. rhinocerus's published genome and transcriptome for future exploration.

    Results and Discussion: Apoptosis induction in MCF7 cells by F5 may involve a cross-talk between the extrinsic and intrinsic apoptotic pathways with upregulation of caspase-8 and -9 activities and a marked decrease of Bcl-2. On the other hand, the levels of pro-apoptotic Bax, BID, and cleaved BID were increased accompanied by observable actin cleavage. At gene level, F5 composed of three predicted non-synonymous single nucleotide polymorphisms (T > C) and an alternative 5' splice site.

    Conclusions: Findings from this study provide an advanced framework for further investigations on cancer therapeutics development from L. rhinocerus.

    Matched MeSH terms: Flow Cytometry
  3. Khurana RK, Kumar R, Gaspar BL, Welsby G, Welsby P, Kesharwani P, et al.
    Mater Sci Eng C Mater Biol Appl, 2018 Oct 01;91:645-658.
    PMID: 30033299 DOI: 10.1016/j.msec.2018.05.010
    The current studies envisage unravelling the underlying cellular internalisation mechanism of the systematically developed docetaxel (DTH) polyunsaturated fatty acid (PUFA) enriched self-nanoemulsifying lipidic micellar systems (SNELS). The concentration-, time- and cytotoxicity-related effects of DTH-SNELS on triple negative breast cancer (TNBC) MDA-MB-231 and non-TNBC MCF-7 cell lines were assessed through Presto-blue assay. Subsequently, rhodamine-123 (Rh-123) loaded SNELS were employed for evaluating their internalisation through flow cytometry and fluorescence microscopy, establishing it to be "clathrin-mediated" endocytic pathway. Apoptosis assay (65% cell death) and cell cycle distribution (47% inhibition at G2/M phase) further corroborated the cytotoxicity of DTH-SNELS towards cancerous cells. Biodistribution, histopathology and haematology studies indicated insignificant toxicity of the optimized formulation on vital organs. Preclinical anticancer efficacy studies using 7,12-dimethylbenzantracene (DMBA)-induced model construed significant reduction in breast tumor-volume. Overall, extensive in vitro and in vivo studies indicated the intracellular localization and cytotoxicity, suggesting DTH-SNELS as promising delivery systems for breast tumor therapeutics including TNBC.
    Matched MeSH terms: Flow Cytometry
  4. Saari SM, Basri DF, Budin SB, Warif NM
    Saudi J Biol Sci, 2017 Feb;24(2):320-323.
    PMID: 28149168 DOI: 10.1016/j.sjbs.2015.09.032
    Type 1 diabetes mellitus is a chronic disease characterized by lack of insulin production. Immune mechanisms are implicated in the pathogenesis of Type 1 diabetes. Canarium odontophyllum (CO) fruits and leaves have been shown to possess high antioxidant activity. This study was conducted to evaluate the effects of CO leaves aqueous extract on the blood glucose and T lymphocyte population in the spleen of streptozotocin (STZ)-induced diabetic rats. Nineteen male Sprague-Dawley rats were randomly divided into three groups: normal, diabetic control and CO treated diabetic groups. Diabetes was induced by a single intraperitoneal injection of 65 mg STZ/kg body weight. The extract of CO leaves was administered orally by force feeding daily at the dose of 300 mg/kg for 28 days. The rats were sacrificed at the end of the study and the spleen was harvested for flow cytometry analysis. The results showed a significant decrease in body weight of diabetic and CO treated diabetic groups compared with the normal group (p 
    Matched MeSH terms: Flow Cytometry
  5. Lew TTS, Wong MH, Kwak SY, Sinclair R, Koman VB, Strano MS
    Small, 2018 Nov;14(44):e1802086.
    PMID: 30191658 DOI: 10.1002/smll.201802086
    The ability to control the subcellular localization of nanoparticles within living plants offers unique advantages for targeted biomolecule delivery and enables important applications in plant bioengineering. However, the mechanism of nanoparticle transport past plant biological membranes is poorly understood. Here, a mechanistic study of nanoparticle cellular uptake into plant protoplasts is presented. An experimentally validated mathematical model of lipid exchange envelope penetration mechanism for protoplasts, which predicts that the subcellular distribution of nanoparticles in plant cells is dictated by the particle size and the magnitude of the zeta potential, is advanced. The mechanism is completely generic, describing nanoparticles ranging from quantum dots, gold and silica nanoparticles, nanoceria, and single-walled carbon nanotubes (SWNTs). In addition, the use of imaging flow cytometry to investigate the influence of protoplasts' morphological characteristics on nanoparticle uptake efficiency is demonstrated. Using DNA-wrapped SWNTs as model nanoparticles, it is found that glycerolipids, the predominant lipids in chloroplast membranes, exhibit stronger lipid-nanoparticle interaction than phospholipids, the major constituent in protoplast membrane. This work can guide the rational design of nanoparticles for targeted delivery into specific compartments within plant cells without the use of chemical or mechanical aid, potentially enabling various plant engineering applications.
    Matched MeSH terms: Flow Cytometry
  6. Gounder SS, Abdullah BJJ, Radzuanb NEIBM, Zain FDBM, Sait NBM, Chua C, et al.
    Anal Cell Pathol (Amst), 2018;2018:7871814.
    PMID: 30175033 DOI: 10.1155/2018/7871814
    Age-associated changes in natural killer (NK) cell population, phenotype, and functions are directly attributed to the risk of several diseases and infections. It is predicted to be the major cause of the increase in mortality. Based on the surface density of CD56, NK cells are subdivided into two types, such as CD56bright and CD56dim cells, which represent cytokine production and cytotoxicity. In our study, we have examined the age-associated changes in the NK cell population and their subsets at different age groups of males and females (at a range from 41 to 80 years). We found that the total lymphocyte count significantly dropped upon aging in both genders. Although, the level of total immune cells also dropped on aging, and surprisingly the total NK cell population was remarkably increased with the majority of NK cells being CD56dim. Subsequently, we evaluated the proliferation potential of NK cells and our results showed that the NK cell proliferation ability declines with age. Overall, our findings prove that there is an increase in the circulating NK cell population upon aging. However, the proliferation rate upon aging declines when compared to the young age group (<41 yrs).
    Matched MeSH terms: Flow Cytometry
  7. Gao C, Sun X, Wu Z, Yuan H, Han H, Huang H, et al.
    Front Pharmacol, 2020;11:391.
    PMID: 32477104 DOI: 10.3389/fphar.2020.00391
    Introduction: The leaves of Morus alba L is a traditional Chinese medicine widely applied in lung diseases. Moracin N (MAN), a secondary metabolite extracted form the leaves of Morus alba L, is a potent anticancer agent. But its molecular mechanism remains unveiled.

    Objective: In this study, we aimed to examine the effect of MAN on human lung cancer and reveal the underlying molecular mechanism.

    Methods: MTT assay was conducted to measure cell viability. Annexin V-FITC/PI staining was used to detect cell apoptosis. Confocal microscope was performed to determine the formation of autophagosomes and autolysosomes. Flow cytometry was performed to quantify cell death. Western blotting was used to determine the related-signaling pathway.

    Results: In the present study, we demonstrated for the first time that MAN inhibitd cell proliferation and induced cell apoptosis in human non-small-cell lung carcinoma (NSCLC) cells. We found that MAN treatment dysregulated mitochondrial function and led to mitochondrial apoptosis in A549 and PC9 cells. Meanwhile, MAN enhanced autophagy flux by the increase of autophagosome formation, the fusion of autophagsomes and lysosomes and lysosomal function. Moreover, mTOR signaling pathway, a classical pathway regualting autophagy, was inhibited by MAN in a time- and dose-dependent mannner, resulting in autophagy induction. Interestingly, autophagy inhibition by CQ or Atg5 knockdown attenuated cell apoptosis by MAN, indicating that autophagy serves as cell death. Furthermore, autophagy-mediated cell death by MAN can be blocked by reactive oxygen species (ROS) scavenger NAC, indicating that ROS accumulation is the inducing factor of apoptosis and autophagy. In summary, we revealed the molecular mechanism of MAN against lung cancer through apoptosis and autophagy, suggesting that MAN might be a novel therapeutic agent for NSCLC treatment.

    Matched MeSH terms: Flow Cytometry
  8. Badroon NA, Abdul Majid N, Alshawsh MA
    Nutrients, 2020 Jun 12;12(6).
    PMID: 32545423 DOI: 10.3390/nu12061757
    Liver cancer is the sixth most common cancer in terms of incidence and the fourth in terms of mortality. Hepatocellular carcinoma (HCC) represents almost 90% of primary liver cancer and has become a major health problem globally. Cardamonin (CADMN) is a natural bioactive chalcone found in several edible plants such as cardamom and Alpinia species. Previous studies have shown that CADMN possesses anticancer activities against breast, lung, prostate and colorectal cancer. In the present study, the mechanisms underlying the anti-hepatocellular carcinoma effects of CADMN were investigated against HepG2 cells. The results demonstrated that CADMN has anti-proliferative effects and apoptotic action on HepG2 cells. CADMN showed potent cytotoxicity against HepG2 cells with an IC50 of 17.1 ± 0.592 μM at 72 h. Flow cytometry analysis demonstrated that CADMN arrests HepG2 cells in G1 phase and induces a significant increase in early and late apoptosis in a time-dependent manner. The mechanism by which CADMN induces apoptotic action was via activation of both extrinsic and intrinsic pathways. Moreover, the findings of this study showed the involvement of reactive oxygen species (ROS), which inhibit the NF-κB pathway and further enhance the apoptotic process. Together, our findings further support the potential anticancer activity of CADMN as an alternative therapeutic agent against HCC.
    Matched MeSH terms: Flow Cytometry
  9. Ibrahim N, Roslee A, Azlan M, Abu-Bakar N
    Trop Biomed, 2020 Mar 01;37(1):1-14.
    PMID: 33612713
    An appropriate pH maintenance within a membrane-enclosed organelle is vital for the occurrence of biological processes. Artemisinin (ART), a potent antimalarial drug has been reported to target the digestive vacuole (DV) of Plasmodium falciparum, which might alter the pH of the organelle, thereby impairing the hemoglobin degradation and subsequent heme detoxification. Hence, a flow cytometry-based technique using fluorescein isothiocyanate-dextran (FITC-dextran) as a ratiometric pH probe was employed to measure the pH of the DV of the malaria parasite treated with ART. Based on the pH calibration curve generated, the steady-state pH of the acidic DV of the non-treated parasites was 5.42 ± 0.11, indicating that FITC-dextran is suitable for detection of physiological pH of the organelle. The alteration of the DV pH occurred when the parasites were treated with ART even at the sub-lethal concentrations (15 and 30 nM) used. The similar effect was shown by the parasites treated with a standard proton pump inhibitor, concanamycin A. This suggests that ART might have altered the DV pH at lower levels than the level needed to kill the parasite. This study has important implications in designing new ART treatment strategies and in generating new endoperoxide-based antimalarial drugs pertaining to the interruption of the pH regulation of the malaria parasite's DV.
    Matched MeSH terms: Flow Cytometry
  10. Omar NS, Kannan TP, Ismail AR, Abdullah SF, Samsudin AR, Hamid SS
    Int J Toxicol, 2011 Aug;30(4):443-51.
    PMID: 21540334 DOI: 10.1177/1091581811399474
    This study aimed to evaluate the in vitro cytotoxic effects of locally produced processed natural coral (PNC) using human osteoblasts (HOS). Cytotoxicity was not observed when HOS cells were cultured with PNC, as assessed by (3-(4,5-dimethylthiazol-2-yl)-2-5-diphenyl tetrazolium bromide; MTT) and Neutral Red (NR) assays at concentration up 200 mg/mL for up to 72 hours. Flow cytometry (FCM) analysis showed that PNC (200 mg/mL) did not decrease viability of HOS cells after 48 and 72 hours of treatment. In a cell attachment study, the HOS cells attached to the edge of the PNC disc, and later grew into the pores of the PNC disc. All results from these studies indicate that locally produced PNC material is noncytotoxic and favors the growth of HOS cells.
    Matched MeSH terms: Flow Cytometry
  11. Boroumand Moghaddam A, Moniri M, Azizi S, Abdul Rahim R, Bin Ariff A, Navaderi M, et al.
    Genes (Basel), 2017 Oct 20;8(10).
    PMID: 29053567 DOI: 10.3390/genes8100281
    Green products have strong potential in the discovery and development of unique drugs. Zinc oxide nanoparticles (ZnO NPs) have been observed to have powerful cytotoxicity against cells that cause breast cancer. The present study aims to examine the cell cycle profile, status of cell death, and pathways of apoptosis in breast cancer cells (MCF-7) treated with biosynthesized ZnO NPs. The anti-proliferative activity of ZnO NPs was determined using MTT assay. Cell cycle analysis and the mode of cell death were evaluated using a flow cytometry instrument. Quantitative real-time-PCR (qRT-PCR) was employed to investigate the expression of apoptosis in MCF-7 cells. ZnO NPs were cytotoxic to the MCF-7 cells in a dose-dependent manner. The 50% growth inhibition concentration (IC50) of ZnO NPs at 24 h was 121 µg/mL. Cell cycle analysis revealed that ZnO NPs induced sub-G₁ phase (apoptosis), with values of 1.87% at 0 μg/mL (control), 71.49% at IC25, 98.91% at IC50, and 99.44% at IC75. Annexin V/propidium iodide (PI) flow cytometry analysis confirmed that ZnO NPs induce apoptosis in MCF-7 cells. The pro-apoptotic genes p53, p21, Bax, and JNK were upregulated, whereas anti-apoptotic genes Bcl-2, AKT1, and ERK1/2 were downregulated in a dose-dependent manner. The arrest and apoptosis of MCF-7 cells were induced by ZnO NPs through several signalling pathways.
    Matched MeSH terms: Flow Cytometry
  12. Lope Pihie AH, Zakaria ZA, Othman F
    PMID: 22474490 DOI: 10.1155/2012/123470
    The present study was to determine the anticancer potential of Labisia pumila in in vitro models. Results from the study revealed that ethanol extract of L. pumila was more cytotoxic against HM3KO cells while having reduced effects on nonmalignant cells as compared to aqueous and hexane extracts. Thus, ethanol extract was selected to be further separated by using the bioassay-guided fractionation method to give an active fraction, SF2Lp. Results obtained from the flow cytometry analysis showed that SF2Lp was able to arrest the HM3KO cell cycle at the G1 phase, while morphological findings from AO-EB nuclear staining assays along with the Apoptotic Index confirmed the induction of apoptosis by SF2Lp in HM3KO cells. Results from the mechanistic study further revealed that SF2Lp treatment was able to concurrently increase the expression level of p53 and pro-apoptotic protein Bax and also reduce the expression level of anti-apoptotic protein BCl-2 in HM3KO cells, directly contributing to the increase in Bax/Bcl-2 ratio. These findings, therefore, suggested that L. pumila was able to inhibit HM3KO cell growth possibly by arresting the cell cycle at G1 phase and inducing apoptosis in HM3KO cells via the up- and down-regulation of Bax/Bcl-2 protein, mediated through a p53-dependent pathway.
    Matched MeSH terms: Flow Cytometry
  13. Mainasara MM, Abu Bakar MF, Md Akim A, Linatoc AC, Abu Bakar FI, Ranneh YKH
    PMID: 33505506 DOI: 10.1155/2021/8826986
    Breast cancer is among the most commonly diagnosed cancer and the leading cause of cancer-related death among women globally. Malaysia is a country that is rich in medicinal plant species. Hence, this research aims to explore the secondary metabolites, antioxidant, and antiproliferative activities of Dioscorea bulbifera leaf collected from Endau Rompin, Johor, Malaysia. Antioxidant activity was assessed using 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP), and 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) assays, while the cytotoxicity of D. bulbifera on MDA-MB-231 and MCF-7 breast cancer cell lines was tested using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Cell cycle analysis and apoptosis were assessed using flow cytometry analysis. Phytochemical profiling was conducted using gas chromatography-mass spectrometry (GC-MS). Results showed that methanol extract had the highest antioxidant activity in DPPH, FRAP, and ABTS assays, followed by ethyl acetate and hexane extracts. D. bulbifera tested against MDA-MB-231 and MCF-7 cell lines showed a pronounced cytotoxic effect with IC50 values of 8.96 μg/mL, 6.88 μg/mL, and 3.27 μg/mL in MCF-7 and 14.29 μg/mL, 11.86 μg/mL, and 7.23 μg/mL in MDA-MB-231, respectively. Cell cycle analysis also indicated that D. bulbifera prompted apoptosis at various stages, and a significant decrease in viable cells was detected within 24 h and substantially improved after 48 h and 72 h of treatment. Phytochemical profiling of methanol extract revealed the presence of 39 metabolites such as acetic acid, n-hexadecanoic acid, acetin, hexadecanoate, 7-tetradecenal, phytol, octadecanoic acid, cholesterol, palmitic acid, and linolenate. Hence, these findings concluded that D. bulbifera extract has promising anticancer and natural antioxidant agents. However, further study is needed to isolate the bioactive compounds and validate the effectiveness of this extract in the In in vivo model.
    Matched MeSH terms: Flow Cytometry
  14. Zheng X, Liao Y, Wang J, Hu S, Rudramurthy GR, Swamy MK, et al.
    PMID: 30524484 DOI: 10.1155/2018/9691085
    Microglial cells, upon hyperactivation, produce proinflammatory cytokines and other oxidative stress mediators causing neuroinflammation, which is associated with the progress of many neurodegenerative diseases. Suppressing the microglial activation has hence been used as an approach for treating such diseases. In this study, the antineuroinflammatory effect of simvastatin was examined in lipopolysaccharide (LPS)-activated rat C6 glioma cells. The cell proliferation and cytotoxic effect of LPS and simvastatin on C6 glioma cells was evaluated by (MTT) assay. Neuroinflammation was induced in differentiated cell lines by treatment with 3.125 μg/mL of LPS for 12 h. Upon induction, the cell lines were treated with different concentrations (3.125, 6.25, 12.5, 25, 50, 100 μM) of simvastatin and incubated in a humidified CO2 incubator for 24 to 48 h. The optimum concentrations of LPS and simvastatin were found to be 3.125 μg/mL and 25 μM, respectively, with a cell viability of more than 90% at 24 h postincubation. Furthermore, proinflammatory marker expression was analyzed by flow cytometry and showed a decrease in interferon-γ, interleukin 6, nuclear factor-κB p65, and tumor necrosis factor-α in simvastatin-treated and LPS-induced neuroinflammatory cells, and the mean fluorescent values were found to be 21.75 ± 0.76, 20.9 ± 1.90, 19.72 ± 1.29, and 16.82 ± 0.97, respectively, as compared to the untreated cells. Thus, we show that simvastatin has the potential to regulate the anti-inflammatory response in microglial cells upon LPS challenge. Hence, simvastatin can be employed as a potent anti-inflammatory drug against neuroinflammatory diseases and neurodegenerative disorders.
    Matched MeSH terms: Flow Cytometry
  15. Tajudin TJ, Mat N, Siti-Aishah AB, Yusran AA, Alwi A, Ali AM
    PMID: 23227094 DOI: 10.1155/2012/127373
    Methanolic extract of Cynometra cauliflora whole fruit was assayed for cytotoxicity against the human promyelocytic leukemia HL-60 and the normal mouse fibroblast NIH/3T3 cell lines by using the MTT assay. The CD(50) of the extract for 72 hours was 0.9 μg/mL whereas the value for the cytotoxic drug vincristine was 0.2 μg/mL. The viability of the NIH/3T3 cells was at 80.0% when treated at 15.0 μg/mL. The extract inhibited HL-60 cell proliferation with dose dependence. AO/PI staining of HL-60 cells treated with the extract revealed that majority of cells were in the apoptotic cell death mode. Flow cytometry analysis of HL-60 cells treated at CD(50) of the extract showed that the early apoptotic cells were 31.0, 26.3 and 19.9% at 24, 48, and 72 hours treatment, respectively. The percentage of late apoptotic cells was increased from 62.0 at 24 hours to 64.1 and 70.2 at 48 and 72 hours, respectively. Meanwhile, percent of necrotic cells were 4.9, 6.6, and 8.5 at 24, 48, and 72 hours, respectively. This study has shown that the methanolic extract of C. cauliflora whole fruit was cytotoxic towards HL-60 cells and induced the cells into apoptotic cell death mode, but less cytotoxic towards NIH/3T3 cells.
    Matched MeSH terms: Flow Cytometry
  16. Alkaisi A, Ismail AR, Mutum SS, Ahmad ZA, Masudi S, Abd Razak NH
    J Oral Maxillofac Surg, 2013 Oct;71(10):1758.e1-13.
    PMID: 24040948 DOI: 10.1016/j.joms.2013.05.016
    The main aim of the present study was to evaluate the capacity of stem cells from human exfoliated deciduous teeth (SHED) to enhance mandibular distraction osteogenesis (DO) in rabbits.
    Matched MeSH terms: Flow Cytometry/methods
  17. Rasoli M, Yeap SK, Tan SW, Moeini H, Ideris A, Bejo MH, et al.
    Comp Immunol Microbiol Infect Dis, 2014 Jan;37(1):11-21.
    PMID: 24225159 DOI: 10.1016/j.cimid.2013.10.003
    Newcastle disease (ND) is a highly contagious avian disease and one of the major causes of economic losses in the poultry industry. The emergence of virulent NDV genotypes and repeated outbreaks of NDV in vaccinated chickens have raised the need for fundamental studies on the virus-host interactions. In this study, the profiles of B and T lymphocytes and macrophages and differential expression of 26 immune-related genes in the spleen of specific-pathogen-free (SPF) chickens, infected with either the velogenic genotype VII NDV strain IBS002 or the genotype VIII NDV strain AF2240, were evaluated. A significant reduction in T lymphocyte population and an increase in the infiltration of IgM+ B cells and KUL01+ macrophages were detected in the infected spleens at 1, 3 and 4 days post-infection (dpi) (P<0.05). The gene expression profiles showed an up-regulation of CCLi3, CXCLi1, CXCLi2 (IL-8), IFN-γ, IL-12α, IL-18, IL-1β, IL-6, iNOS, TLR7, MHCI, IL-17F and TNFSF13B (P<0.05). However, these two genotypes showed different cytokine expression patterns and viral load. IBS002 showed higher viral load than AF2240 in spleen at 3 and 4dpi and caused a more rapid up-regulation of CXCLi2, IFN-γ, IL-12α, IL-18, IL-1β, iNOS and IL-10 at 3dpi. Meanwhile, the expression levels of CCLI3, CXCLi1, IFN-γ, IL-12α, IL-1β and iNOS genes were significantly higher in AF2240 at 4dpi. In addition, the expression levels of IL-10 were significantly higher in the IBS002-infected chickens at 3 and 4dpi. Hence, infection with velogenic genotype VII and VIII NDV induced different viral load and production of cytokines and chemokines associated with inflammatory reactions.
    Matched MeSH terms: Flow Cytometry/veterinary
  18. Salehinejad P, Alitheen NB, Ali AM, Omar AR, Mohit M, Janzamin E, et al.
    In Vitro Cell Dev Biol Anim, 2012 Feb;48(2):75-83.
    PMID: 22274909 DOI: 10.1007/s11626-011-9480-x
    Several techniques have been devised for the dissociation of tissues for primary culture. These techniques can affect the quantity and quality of the isolated cells. The aim of our study was to develop the most appropriate method for the isolation of human umbilical cord-derived mesenchymal (hUCM) cells. In the present study, we compared four methods for the isolation of hUCM cells: three enzymatic methods; collagenase/hyaluronidase/trypsin (CHT), collagenase/trypsin (CT) and trypsin (Trp), and an explant culture (Exp) method. The trypan blue dye exclusion test, the water-soluble tetrazolium salt-1 (WST-1) assay, flow cytometry, alkaline phosphatase activity and histochemical staining were used to evaluate the results of the different methods. The hUCM cells were successfully isolated by all methods but the isolation method used profoundly altered the cell number and proliferation capacity of the isolated cells. The cells were successfully differentiated into adipogenic and osteogenic lineages and alkaline phosphatase activity was detected in the hUCM cell colonies of all groups. Flow cytometry analysis revealed that CD44, CD73, CD90 and CD105 were expressed in all groups, while CD34 and CD45 were not expressed. The expression of C-kit in the enzymatic groups was higher than in the explant group, while the expression of Oct-4 was higher in the CT group compared to the other groups. We concluded that the collagenase/trypsin method of cell isolation yields a higher cell density than the others. These cells expressed a higher rate of pluripotent cell markers such as C-kit and Oct-4, while the explant method of cell isolation resulted in a higher cell proliferation rate and activity compared to the other methods.
    Matched MeSH terms: Flow Cytometry/methods
  19. Tengku Din TA, Seeni A, Khairi WN, Shamsuddin S, Jaafar H
    Asian Pac J Cancer Prev, 2014;15(24):10659-63.
    PMID: 25605156
    BACKGROUND: Rapamycin is an effective anti-angiogenic drug. However, the mode of its action remains unclear. Therefore, in this study, we aimed to elucidate the antitumor mechanism of rapamycin, hypothetically via apoptotic promotion, using MCF-7 breast cancer cells.

    MATERIALS AND METHODS: MCF-7 cells were plated at a density of 15105 cells/well in 6-well plates. After 24h, cells were treated with a series of concentrations of rapamycin while only adding DMEM medium with PEG for the control regiment and grown at 37oC, 5% CO2 and 95% air for 72h. Trypan blue was used to determine the cell viability and proliferation. Untreated and rapamycin-treated MCF-7 cells were also examined for morphological changes with an inverted-phase contrast microscope. Alteration in cell morphology was ascertained, along with a stage in the cell cycle and proliferation. In addition, cytotoxicity testing was performed using normal mouse breast mammary pads.

    RESULTS: Our results clearly showed that rapamycin exhibited inhibitory activity on MCF-7 cell lines. The IC50 value of rapamycin on the MCF-7 cells was determined as 0.4μg/ml (p<0.05). Direct observation by inverted microscopy demonstrated that the MCF-7 cells treated with rapamycin showed characteristic features of apoptosis including cell shrinkage, vascularization and autophagy. Cells underwent early apoptosis up to 24% after 72h. Analysis of the cell cycle showed an increase in the G0G1 phase cell population and a corresponding decrease in the S and G2M phase populations, from 81.5% to 91.3% and 17.3% to 7.9%, respectively.

    CONCLUSIONS: This study demonstrated that rapamycin may potentially act as an anti-cancer agent via the inhibition of growth with some morphological changes of the MCF-7 cancer cells, arrest cell cycle progression at G0/G1 phase and induction of apoptosis in late stage of apoptosis. Further studies are needed to further characterize the mode of action of rapamycin as an anti-cancer agent.

    Matched MeSH terms: Flow Cytometry
  20. Fouz N, Amid A, Hashim YZ
    Asian Pac J Cancer Prev, 2014 Jan;14(11):6709-14.
    PMID: 24377593
    BACKGROUND: Breast cancer is a leading cause of death in women. The available chemotherapy drugs have been associated with many side effects. Bromelain has novel medicinal qualities including anti-inflammatory, anti-thrombotic, fibrinolytic and anti-cancer functions. Commercially available bromelain is obtained through tedious methods; therefore, recombinant bromelain may provide a cheaper and simpler choice with similar quality.

    MATERIALS AND METHODS: This study aimed to assess the effects of commercial and recombinant bromelain on the cytokinetic behavior of MCF-7 breast cancer cells and their potential as therapeutic alternatives in cancer treatment. Cytotoxic activities of commercial and recombinant bromelain were determined using (sulforhodamine) SRB assay. Next, cell viability assays were conducted to determine effects of commercial and recombinant bromelain on MCF-7 cell cytokinetic behavior. Finally, the established growth kinetic data were used to modify a model that predicts the effects of commercial and recombinant bromelain on MCF-7 cells.

    RESULTS: Commercial and recombinant bromelain exerted strong effects towards decreasing the cell viability of MCF-7 cells with IC50 values of 5.13 μg/mL and 6.25 μg/mL, respectively, compared to taxol with an IC50 value of 0.063 μg/mL. The present results indicate that commercial and recombinant bromelain both have anti-proliferative activity, reduced the number of cell generations from 3.92 to 2.81 for commercial bromelain and to 2.86 for recombinant bromelain, while with taxol reduction was to 3.12. Microscopic observation of bromelain-treated MCF-7 cells demonstrated detachment. Inhibition activity was verified with growth rates decreased dynamically from 0.009 h-1 to 0.0059 h-1 for commercial bromelain and to 0.0063 h-1 for recombinant bromelain.

    CONCLUSIONS: Commercial and recombinant bromelain both affect cytokinetics of MCF-7 cells by decreasing cell viability, demonstrating similar strength to taxol.

    Matched MeSH terms: Flow Cytometry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links