METHODS: Patients who were 10 to less than 17 years of age were randomly assigned, in a 1:1 ratio, to receive subcutaneous liraglutide (up to 1.8 mg per day) or placebo for a 26-week double-blind period, followed by a 26-week open-label extension period. Inclusion criteria were a body-mass index greater than the 85th percentile and a glycated hemoglobin level between 7.0 and 11.0% if the patients were being treated with diet and exercise alone or between 6.5 and 11.0% if they were being treated with metformin (with or without insulin). All the patients received metformin during the trial. The primary end point was the change from baseline in the glycated hemoglobin level after 26 weeks. Secondary end points included the change in fasting plasma glucose level. Safety was assessed throughout the course of the trial.
RESULTS: Of 135 patients who underwent randomization, 134 received at least one dose of liraglutide (66 patients) or placebo (68 patients). Demographic characteristics were similar in the two groups (mean age, 14.6 years). At the 26-week analysis of the primary efficacy end point, the mean glycated hemoglobin level had decreased by 0.64 percentage points with liraglutide and increased by 0.42 percentage points with placebo, for an estimated treatment difference of -1.06 percentage points (P<0.001); the difference increased to -1.30 percentage points by 52 weeks. The fasting plasma glucose level had decreased at both time points in the liraglutide group but had increased in the placebo group. The number of patients who reported adverse events was similar in the two groups (56 [84.8%] with liraglutide and 55 [80.9%] with placebo), but the overall rates of adverse events and gastrointestinal adverse events were higher with liraglutide.
CONCLUSIONS: In children and adolescents with type 2 diabetes, liraglutide, at a dose of up to 1.8 mg per day (added to metformin, with or without basal insulin), was efficacious in improving glycemic control over 52 weeks. This efficacy came at the cost of an increased frequency of gastrointestinal adverse events. (Funded by Novo Nordisk; Ellipse ClinicalTrials.gov number, NCT01541215.).
OBJECTIVES: To compare techniques of blood glucose monitoring and their impact on maternal and infant outcomes among pregnant women with pre-existing diabetes.
SEARCH METHODS: We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (30 November 2016), searched reference lists of retrieved studies and contacted trial authors.
SELECTION CRITERIA: Randomised controlled trials (RCTs) and quasi-RCTs comparing techniques of blood glucose monitoring including SMBG, continuous glucose monitoring (CGM) or clinic monitoring among pregnant women with pre-existing diabetes mellitus (type 1 or type 2). Trials investigating timing and frequency of monitoring were also included. RCTs using a cluster-randomised design were eligible for inclusion but none were identified.
DATA COLLECTION AND ANALYSIS: Two review authors independently assessed study eligibility, extracted data and assessed the risk of bias of included studies. Data were checked for accuracy. The quality of the evidence was assessed using the GRADE approach.
MAIN RESULTS: This review update includes at total of 10 trials (538) women (468 women with type 1 diabetes and 70 women with type 2 diabetes). The trials took place in Europe and the USA. Five of the 10 included studies were at moderate risk of bias, four studies were at low to moderate risk of bias, and one study was at high risk of bias. The trials are too small to show differences in important outcomes such as macrosomia, preterm birth, miscarriage or death of baby. Almost all the reported GRADE outcomes were assessed as being very low-quality evidence. This was due to design limitations in the studies, wide confidence intervals, small sample sizes, and few events. In addition, there was high heterogeneity for some outcomes.Various methods of glucose monitoring were compared in the trials. Neither pooled analyses nor individual trial analyses showed any clear advantages of one monitoring technique over another for primary and secondary outcomes. Many important outcomes were not reported.1. Self-monitoring versus standard care (two studies, 43 women): there was no clear difference for caesarean section (risk ratio (RR) 0.78, 95% confidence interval (CI) 0.40 to 1.49; one study, 28 women) or glycaemic control (both very low-quality), and not enough evidence to assess perinatal mortality and neonatal mortality and morbidity composite. Hypertensive disorders of pregnancy, large-for-gestational age, neurosensory disability, and preterm birth were not reported in either study.2. Self-monitoring versus hospitalisation (one study, 100 women): there was no clear difference for hypertensive disorders of pregnancy (pre-eclampsia and hypertension) (RR 4.26, 95% CI 0.52 to 35.16; very low-quality: RR 0.43, 95% CI 0.08 to 2.22; very low-quality). There was no clear difference in caesarean section or preterm birth less than 37 weeks' gestation (both very low quality), and the sample size was too small to assess perinatal mortality (very low-quality). Large-for-gestational age, mortality or morbidity composite, neurosensory disability and preterm birth less than 34 weeks were not reported.3. Pre-prandial versus post-prandial glucose monitoring (one study, 61 women): there was no clear difference between groups for caesarean section (RR 1.45, 95% CI 0.92 to 2.28; very low-quality), large-for-gestational age (RR 1.16, 95% CI 0.73 to 1.85; very low-quality) or glycaemic control (very low-quality). The results for hypertensive disorders of pregnancy: pre-eclampsia and perinatal mortality are not meaningful because these outcomes were too rare to show differences in a small sample (all very low-quality). The study did not report the outcomes mortality or morbidity composite, neurosensory disability or preterm birth.4. Automated telemedicine monitoring versus conventional system (three studies, 84 women): there was no clear difference for caesarean section (RR 0.96, 95% CI 0.62 to 1.48; one study, 32 women; very low-quality), and mortality or morbidity composite in the one study that reported these outcomes. There were no clear differences for glycaemic control (very low-quality). No studies reported hypertensive disorders of pregnancy, large-for-gestational age, perinatal mortality (stillbirth and neonatal mortality), neurosensory disability or preterm birth.5.CGM versus intermittent monitoring (two studies, 225 women): there was no clear difference for pre-eclampsia (RR 1.37, 95% CI 0.52 to 3.59; low-quality), caesarean section (average RR 1.00, 95% CI 0.65 to 1.54; I² = 62%; very low-quality) and large-for-gestational age (average RR 0.89, 95% CI 0.41 to 1.92; I² = 82%; very low-quality). Glycaemic control indicated by mean maternal HbA1c was lower for women in the continuous monitoring group (mean difference (MD) -0.60 %, 95% CI -0.91 to -0.29; one study, 71 women; moderate-quality). There was not enough evidence to assess perinatal mortality and there were no clear differences for preterm birth less than 37 weeks' gestation (low-quality). Mortality or morbidity composite, neurosensory disability and preterm birth less than 34 weeks were not reported.6. Constant CGM versus intermittent CGM (one study, 25 women): there was no clear difference between groups for caesarean section (RR 0.77, 95% CI 0.33 to 1.79; very low-quality), glycaemic control (mean blood glucose in the 3rd trimester) (MD -0.14 mmol/L, 95% CI -2.00 to 1.72; very low-quality) or preterm birth less than 37 weeks' gestation (RR 1.08, 95% CI 0.08 to 15.46; very low-quality). Other primary (hypertensive disorders of pregnancy, large-for-gestational age, perinatal mortality (stillbirth and neonatal mortality), mortality or morbidity composite, and neurosensory disability) or GRADE outcomes (preterm birth less than 34 weeks' gestation) were not reported.
AUTHORS' CONCLUSIONS: This review found no evidence that any glucose monitoring technique is superior to any other technique among pregnant women with pre-existing type 1 or type 2 diabetes. The evidence base for the effectiveness of monitoring techniques is weak and additional evidence from large well-designed randomised trials is required to inform choices of glucose monitoring techniques.