DESIGN, SETTING AND PARTICIPANTS: We used PCR to determine the size of CTG repeats in 377 individuals not known to be affected by DM and 11 DM1 suspected patients, recruited from a tertiary hospital in Kuala Lumpur. TP-PCR was performed on selected samples, followed by Southern blot hybridisation of PCR amplified fragments to confirm and estimate the size of CTG expansion.
OUTCOME MEASURES: The number of individuals not known to be affected by DM with (CTG)>18 was determined according to ethnic group and as a whole population. The χ2 test was performed to compare the distribution of (CTG)>18 with 12 other populations. Additionally, the accuracy of TP-PCR in detecting CTG expansion in 11 patients with DM1 was determined by comparing the results with that from Southern blot hybridisation.
RESULTS: Of the 754 chromosomes studied, (CTG)>18 frequency of 3.60%, 1.57% and 4.00% in the Malay, Chinese and Indian subpopulations, respectively, was detected, showing similarities to data from Thai, Taiwanese and Kuwaiti populations. We also successfully detected CTG expansions in 9 patients using the TP-PCR method followed by the estimation of CTG expansion size via Southern blot hybridisation.
CONCLUSIONS: The results show a low DM1 prevalence in Malaysia with the possibility of underdiagnosis and demonstrates the feasibility of using a clinical and TP-PCR-based approach for rapid and cost-effective DM1 diagnosis in developing countries.
METHODS: The cross-sectional study was designed to investigate the occurrence of respiratory viruses including respiratory syncytisl virus (RSV), human metapneumovirus (HMPV), influenza virus A and B (IFV-A and B), parainfluenzavirus 1, 2, 3 and 4 (PIV 1, 2, 3 and 4), human rhinoviruses (HRV), human enterovirus (HEV), human coronaviruses (HCoV) 229E and OC43, human bocavirus (HBoV) and human adenovirus (HAdV) in hospitalized children with ALRTIs, at Hospital Serdang, Malaysia, from June 16 to December 21, 2009. The study was also designed in part to assess the performance of the conventional methods against molecular methods.
RESULTS: Viral pathogens were detected in 158 (95.8%) of the patients. Single virus infections were detected in 114 (67.9%) patients; 46 (27.9%) were co-infected with different viruses including double-virus infections in 37 (22.4%) and triple-virus infections in 9 (5.5%) cases. Approximately 70% of samples were found to be positive using conventional methods compared with 96% using molecular methods. A wide range of respiratory viruses were detected in the study. There was a high prevalence of RSV (50.3%) infections, particularly group B viruses. Other etiological agents including HAdV, HMPV, IFV-A, PIV 1-3, HBoV, HCoV-OC43 and HEV were detected in 14.5, 9.6, 9.1, 4.8, 3.6, 2.4 and 1.8 percent of the samples, respectively.
CONCLUSION: Our results demonstrated the increased sensitivity of molecular detection methods compared with conventional methods for the diagnosis of ARTIs in hospitalized children. This is the first report of HMPV infections in Malaysia.
METHODS: 2010-2015 incidence data for influenza A (IAV), influenza B (IBV), respiratory syncytial (RSV) and parainfluenza (PIV) virus infections were collected from 18 sites (14 countries), consisting of local (n = 6), regional (n = 9) and national (n = 3) laboratories using molecular diagnostic methods. Each site submitted monthly virus incidence data, together with details of their patient populations tested and diagnostic assays used.
RESULTS: For the Northern Hemisphere temperate countries, the IAV, IBV and RSV incidence peaks were 2-6 months out of phase with those in the Southern Hemisphere, with IAV having a sharp out-of-phase difference at 6 months, whereas IBV and RSV showed more variable out-of-phase differences of 2-6 months. The tropical sites Singapore and Kuala Lumpur showed fluctuating incidence of these viruses throughout the year, whereas subtropical sites such as Hong Kong, Brisbane and Sydney showed distinctive biannual peaks for IAV but not for RSV and PIV.
CONCLUSIONS: There was a notable pattern of synchrony of IAV, IBV and RSV incidence peaks globally, and within countries with multiple sampling sites (Canada, UK, Australia), despite significant distances between these sites.
METHODOLOGY/PRINCIPLE FINDINGS: We investigated the human-infecting Leptospira species in blood and serum samples collected from clinically suspected leptospirosis patients admitted to three tertiary care hospitals in Malaysia. From a total of 165 patients, 92 (56%) were confirmed cases of leptospirosis through Microscopic Agglutination Test (MAT) (n = 43; 47%), Polymerase Chain Reaction (PCR) (n = 63; 68%) or both MAT and PCR (n = 14; 15%). The infecting Leptospira spp., determined by partial 16S rDNA (rrs) gene sequencing revealed two pathogenic species namely Leptospira interrogans (n = 44, 70%) and Leptospira kirschneri (n = 17, 27%) and one intermediate species Leptospira wolffii (n = 2, 3%). Multilocus sequence typing (MLST) identified an isolate of L. interrogans as a novel sequence type (ST 265), suggesting that this human-infecting strain has a unique genetic profile different from similar species isolated from rodents so far.
CONCLUSIONS/SIGNIFICANCE: Leptospira interrogans and Leptospira kirschneri were identified as the dominant Leptospira species causing human leptospirosis in Central Malaysia. The existence of novel clinically important ST 265 (infecting human), that is different from rodent L. interrogans strains cautions reservoir(s) of these Leptospira lineages are yet to be identified.