Displaying publications 81 - 84 of 84 in total

Abstract:
Sort:
  1. Rizal S, Saharudin NI, Olaiya NG, Khalil HPSA, Haafiz MKM, Ikramullah I, et al.
    Molecules, 2021 Apr 01;26(7).
    PMID: 33916094 DOI: 10.3390/molecules26072008
    The degradation and mechanical properties of potential polymeric materials used for green manufacturing are significant determinants. In this study, cellulose nanofibre was prepared from Schizostachyum brachycladum bamboo and used as reinforcement in the PLA/chitosan matrix using melt extrusion and compression moulding method. The cellulose nanofibre(CNF) was isolated using supercritical carbon dioxide and high-pressure homogenisation. The isolated CNF was characterised with transmission electron microscopy (TEM), FT-IR, zeta potential and particle size analysis. The mechanical, physical, and degradation properties of the resulting biocomposite were studied with moisture content, density, thickness swelling, tensile, flexural, scanning electron microscopy, thermogravimetry, and biodegradability analysis. The TEM, FT-IR, and particle size results showed successful isolation of cellulose nanofibre using this method. The result showed that the physical, mechanical, and degradation properties of PLA/chitosan/CNF biocomposite were significantly enhanced with cellulose nanofibre. The density, thickness swelling, and moisture content increased with the addition of CNF. Also, tensile strength and modulus; flexural strength and modulus increased; while the elongation reduced. The carbon residue from the thermal degradation and the glass transition temperature of the PLA/chitosan/CNF biocomposite was observed to increase with the addition of CNF. The result showed that the biocomposite has potential for green and sustainable industrial application.
    Matched MeSH terms: Polyesters/chemistry*
  2. Badran MM, Alomrani AH, Harisa GI, Ashour AE, Kumar A, Yassin AE
    Biomed Pharmacother, 2018 Oct;106:1461-1468.
    PMID: 30119220 DOI: 10.1016/j.biopha.2018.07.102
    In the present study, docetaxel (DTX)-loaded poly(lactic-co-glycolic acid) (PLGA) and polycaprolactone (PCL) nanoparticles were successfully prepared and coated with chitosan (CS). The prepared nanoparticles (NPs) were evaluated for their particle size, zeta potential, particle morphology, drug entrapment efficiency (EE%), and in vitro drug release profile. The anticancer activity of DTX-loaded NPs was assessed in human HT29 colon cancer cell line utilizing MTT assay. The pharmacokinetics of DTX-loaded NPs was monitored in Wistar rats in comparison to DTX solution. The prepared NPs exhibited particle sizes in the range 177.1 ± 8.2-287.6 ± 14.3 nm. CS decorated NPs exhibited a significant increase in particle size and a switch of zeta potential from negative to positive. In addition, high EE% values were obtained for CS coated PCL NPs and PLGA NPs as 67.1 and 76.2%, respectively. Moreover, lowering the rate of DTX in vitro release was achieved within 48 h by using CS coated NPs. Furthermore, a tremendous increase in DTX cytotoxicity was observed by CS-decorated PLGA NPs compared to all other NPs including DTX-free-NPs and pure DTX. The in vivo study revealed significant enhancement in DTX bioavailability from CS-decorated PLGA NPs with more than 4-fold increase in AUC compared to DTX solution. In conclusion, CS-decorated PLGA NPs are a considerable DTX-delivery carrier with magnificent antitumor efficacy.
    Matched MeSH terms: Polyesters/chemistry*
  3. Eng CC, Ibrahim NA, Zainuddin N, Ariffin H, Yunus WM
    ScientificWorldJournal, 2014;2014:213180.
    PMID: 25254230 DOI: 10.1155/2014/213180
    Natural fiber as reinforcement filler in polymer composites is an attractive approach due to being fully biodegradable and cheap. However, incompatibility between hydrophilic natural fiber and hydrophobic polymer matrix restricts the application. The current studies focus on the effects of incorporation of silane treated OPMF into polylactic acid (PLA)/polycaprolactone (PCL)/nanoclay/OPMF hybrid composites. The composites were prepared by melt blending technique and characterize the composites with Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). FTIR spectra indicated that peak shifting occurs when silane treated OPMF was incorporated into hybrid composites. Based on mechanical properties results, incorporation of silane treated OPMF enhances the mechanical properties of unmodified OPMF hybrid composites with the enhancement of flexural and impact strength being 17.60% and 48.43%, respectively, at 10% fiber loading. TGA thermogram shows that incorporation of silane treated OPMF did not show increment in thermal properties of hybrid composites. SEM micrographs revealed that silane treated OPMF hybrid composites show good fiber/matrix adhesion as fiber is still embedded in the matrix and no cavity is present on the surface. Water absorption test shows that addition of less hydrophilic silane treated OPMF successfully reduces the water uptake of hybrid composites.
    Matched MeSH terms: Polyesters/chemistry
  4. Rizwan M, Yahya R, Hassan A, Yar M, Abd Halim AA, Rageh Al-Maleki A, et al.
    J Mater Sci Mater Med, 2019 Jun 11;30(6):72.
    PMID: 31187295 DOI: 10.1007/s10856-019-6273-3
    The success of wound healing depends upon the proper growth of vascular system in time in the damaged tissues. Poor blood supply to wounded tissues or tissue engineered grafts leads to the failure of wound healing or rejection of grafts. In present paper, we report the synthesis of novel organosoluble and pro-angiogenic chitosan derivative (CSD) by the reaction of chitosan with 1,3-dimethylbarbituric acid and triethylorthoformate (TEOF). The synthesized material was characterized by FTIR and 13C-NMR to confirm the incorporated functional groups and new covalent connectivities. Biodegradability of the synthesized chitosan derivative was tested in the presence of lysozyme and was found to be comparable with CS. The cytotoxicity and apoptosis effect of new derivative was determined against gastric adenocarcinoma (AGS) cells and was found to be non-toxic. The CSD was found to be soluble in majority of organic solvents. It was blended with polycaprolactone (PCL) to form composite scaffolds. From an ex ovo CAM assay, it was noted that CSD stimulated the angiogenesis.
    Matched MeSH terms: Polyesters/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links