Displaying publications 1041 - 1060 of 1808 in total

Abstract:
Sort:
  1. Abdul Somat N, Osman CP, Ismail NH, Yusoff Z, Md Yusof Y
    Science Letters, 2019;13(1):23-32.
    MyJurnal
    In a search for new potential AChE inhibitors, 31 selected medicinal plants from Perlis were collected gathered, air dried and successively extracted using hexane, dichloromethane, and alcohol. The dichloromethane and alcoholic extracts were screened for AChE inhibitory activity using Ellman's method. Out of 31 plant species, the methanol extracts of Rhapis excelsa leaves (97.03 ± 3.71 %), Diospyros blancoi leaves (95.80 ± 1.57 %) and Phyllantus elegans root (83.22 ± 3.08 %) showed the highest AChE inhibitory activity at the concentration of 100 μg/mL.
  2. Wee SY, Haron DEM, Aris AZ, Yusoff FM, Praveena SM
    Environ Geochem Health, 2020 Oct;42(10):3247-3261.
    PMID: 32328897 DOI: 10.1007/s10653-020-00565-8
    Active pharmaceutical ingredients (APIs) are typical endocrine disruptors found in common pharmaceuticals and personal care products, which are frequently detected in aquatic environments, especially surface water treated for drinking. However, current treatment technologies are inefficient for removing emerging endocrine disruptors, leading to the potential contamination of tap water. This study employed an optimized analytical method comprising solid-phase extraction and liquid chromatography-tandem mass spectrometry (SPE-LC-MS/MS) to detect APIs in tap water in Putrajaya, Malaysia. Several therapeutic classes of pharmaceuticals and personal care products, including anti-inflammatory drugs (dexamethasone and diclofenac), antibiotics (sulfamethoxazole and triclosan), antiepileptics (primidone), antibacterial agents (ciprofloxacin), beta-blockers (propranolol), psychoactive stimulants (caffeine), and antiparasitic drugs (diazinon), were detected in the range of 
  3. Leong Bin Abdullah MFI, Tan KL, Mohd Isa S, Yusoff NS, Chear NJY, Singh D
    PLoS One, 2020;15(6):e0234639.
    PMID: 32525924 DOI: 10.1371/journal.pone.0234639
    BACKGROUND AND AIM: Kratom, or Mitragyna speciosa Korth., is a tropical plant that has been reported to exhibit opioid-like effects. Although opioids have been demonstrated to alter the lipid profile of regular users, data on the lipid-altering effects of kratom are scarce. This study aimed to compare the fasting lipid profile of regular kratom users to that of healthy subjects who do not use kratom. It also determined the association between various characteristics of kratom users and the serum triglycerides, total cholesterol, low-density lipoprotein (LDL), and high-density lipoprotein (HDL) levels of regular kratom users.

    METHODS: A total of 200 participants (n = 100 kratom users and n = 100 healthy subjects who do not use kratom) were recruited for this analytical cross-sectional study. Data on sociodemographic status, kratom use characteristics, cigarette smoking, physical activity, body mass index (BMI), fasting serum lipid profile, and liver function were collected from all participants.

    RESULTS: The liver parameters of the study participants were within normal range. The serum total cholesterol and LDL of kratom users were significantly lower than those of healthy subjects who do not use kratom. There were no significant differences in the serum triglyceride and HDL levels. However, higher average daily frequency of kratom use and increasing age were associated with increased serum total cholesterol among kratom users. Other kratom use characteristics such as age of first kratom intake, duration of kratom use, and quantity of daily kratom intake were not associated with increased serum triglyceride, total cholesterol, LDL, and HDL levels.

    CONCLUSIONS: Our findings suggest regular kratom consumption was not linked to elevated serum lipids, except when there is a higher frequency of daily kratom intake. However, the study was limited by the small sample size, and hence a more comprehensive study with larger sample size is warranted to confirm the findings.

  4. Rajasegaran Y, Azlan A, Rosli AA, Yik MY, Kang Zi K, Yusoff NM, et al.
    Biomedicines, 2021 Oct 19;9(10).
    PMID: 34680611 DOI: 10.3390/biomedicines9101494
    MicroRNAs (miRNAs) are short non-coding RNAs involved in post-transcriptional gene regulation. Over the past years, various studies have demonstrated the role of aberrant miRNA expression in the onset of cancer. The mechanisms by which miRNA exerts its cancer-promoting or inhibitory effects are apparent through the various cancer hallmarks, which include selective proliferative advantage, altered stress response, vascularization, invasion and metastasis, metabolic rewiring, the tumor microenvironment and immune modulation; therefore, this review aims to highlight the association between miRNAs and the various cancer hallmarks by dissecting the mechanisms of miRNA regulation in each hallmark separately. It is hoped that the information presented herein will provide further insights regarding the role of cancer and serve as a guideline to evaluate the potential of microRNAs to be utilized as biomarkers and therapeutic targets on a larger scale in cancer research.
  5. Nordin ML, Mohamad Norpi AS, Ng PY, Yusoff K, Abu N, Lim KP, et al.
    Cancers (Basel), 2021 Oct 01;13(19).
    PMID: 34638441 DOI: 10.3390/cancers13194958
    Breast cancer is the most common invasive cancer diagnosed among women. A cancer vaccine has been recognized as a form of immunotherapy with a prominent position in the prevention and treatment of breast cancer. The majority of current breast cancer vaccination strategies aim to stimulate antitumor T-cell responses of the HER2/neu oncogene, which is abnormally expressed in breast cancer cells. However, the role of the B-cell humoral response is often underappreciated in the cancer vaccine design. We have advanced this idea by elucidating the role of B-cells in cancer vaccination by designing a chimeric antigenic peptide possessing both cytotoxic T lymphocytes (GP2) and B-cell (P4) peptide epitopes derived from HER2/neu. The chimeric peptide (GP2-P4) was further conjugated to a carrier protein (KLH), forming a KLH-GP2-P4 conjugate. The immunogenicity of KLH-GP2-P4 was compared with KLH-GP2 (lacking the B-cell epitope) in BALB/c mice. Mice immunized with KLH-GP2-P4 elicited more potent antigen-specific neutralizing antibodies against syngeneic TUBO cells (cancer cell line overexpressing HER2/neu) that was governed by a balanced Th1/Th2 polarization in comparison to KLH-GP2. Subsequently, these immune responses led to greater inhibition of tumor growth and longer survival in TUBO tumor-bearing mice in both prophylactic and therapeutic challenge experiments. Overall, our data demonstrated that the B-cell epitope has a profound effect in orchestrating an efficacious antitumor immunity. Thus, a multi-epitope peptide vaccine encompassing cytotoxic T-lymphocytes, T-helper and B-cell epitopes represents a promising strategy in developing cancer vaccines with a preventive and therapeutic modality for the effective management of breast cancer.
  6. Awais MA, Yusoff MZ, Khan DM, Yahya N, Kamel N, Ebrahim M
    Sensors (Basel), 2021 Sep 30;21(19).
    PMID: 34640888 DOI: 10.3390/s21196570
    Motor imagery (MI)-based brain-computer interfaces have gained much attention in the last few years. They provide the ability to control external devices, such as prosthetic arms and wheelchairs, by using brain activities. Several researchers have reported the inter-communication of multiple brain regions during motor tasks, thus making it difficult to isolate one or two brain regions in which motor activities take place. Therefore, a deeper understanding of the brain's neural patterns is important for BCI in order to provide more useful and insightful features. Thus, brain connectivity provides a promising approach to solving the stated shortcomings by considering inter-channel/region relationships during motor imagination. This study used effective connectivity in the brain in terms of the partial directed coherence (PDC) and directed transfer function (DTF) as intensively unconventional feature sets for motor imagery (MI) classification. MANOVA-based analysis was performed to identify statistically significant connectivity pairs. Furthermore, the study sought to predict MI patterns by using four classification algorithms-an SVM, KNN, decision tree, and probabilistic neural network. The study provides a comparative analysis of all of the classification methods using two-class MI data extracted from the PhysioNet EEG database. The proposed techniques based on a probabilistic neural network (PNN) as a classifier and PDC as a feature set outperformed the other classification and feature extraction techniques with a superior classification accuracy and a lower error rate. The research findings indicate that when the PDC was used as a feature set, the PNN attained the greatest overall average accuracy of 98.65%, whereas the same classifier was used to attain the greatest accuracy of 82.81% with the DTF. This study validates the activation of multiple brain regions during a motor task by achieving better classification outcomes through brain connectivity as compared to conventional features. Since the PDC outperformed the DTF as a feature set with its superior classification accuracy and low error rate, it has great potential for application in MI-based brain-computer interfaces.
  7. Japarin RA, Yusoff NH, Hassan Z, Müller CP, Harun N
    Behav Brain Res, 2021 02 05;399:113021.
    PMID: 33227244 DOI: 10.1016/j.bbr.2020.113021
    Kratom is a medicinal plant that exhibits promising results as an opiate substitute. However, there is little information regarding the abuse profile of its main psychoactive constituent, mitragynine (MG), particularly in relapse to drug abuse. Using the place conditioning procedure as a model of relapse, this study aims to evaluate the ability of MG to induce conditioned place preference (CPP) reinstatement in rats. To evaluate the cross-reinstatement effects, MG and morphine were injected to rats that previously extinguished a morphine- or MG-induced CPP. Following a CPP acquisition induced by either MG (10 and 30 mg/kg, i.p.) or morphine (10 mg/kg, i.p.), rats were subjected to repeated CPP extinction sessions. A low dose priming injection of MG or morphine produced a reinstatement of the previously extinguished CPP. In the second experiment of this study, a priming injection of morphine (1, 3 and 10 mg/kg, i.p.) dose-dependently reinstated an MG-induced CPP. Likewise, a priming injection of MG (3, 10 and 30 mg/kg, i.p.) was able to dose-dependently reinstate a morphine-induced CPP. The present study demonstrates a cross-reinstatement effect between MG and morphine, thereby suggesting a similar interaction in their rewarding motivational properties. The findings from this study also suggesting that a priming exposure to kratom and an opioid may cause relapse for a previously abused drug.
  8. Mohamed Yusoff AA, Mohd Khair SZN, Abd Radzak SM, Idris Z, Lee HC
    J Chin Med Assoc, 2020 Sep;83(9):838-844.
    PMID: 32732530 DOI: 10.1097/JCMA.0000000000000401
    BACKGROUND: The 4977-bp common deletion (mtDNA) is a well-established mitochondrial genome alteration that has been described in various types of human cancers. However, to date, no studies on mtDNA in brain tumors have been reported. The present study aimed to determine mtDNA prevalence in common brain tumors, specifically, low- and high-grade gliomas (LGGs and HGGs), and meningiomas in Malaysian cases. Its correlation with clinicopathological parameters was also evaluated.

    METHODS: A total of 50 patients with pathologically confirmed brain tumors (13 LGGs, 20 HGGs, and 17 meningiomas) were enrolled in this study. mtDNA was detected by using polymerase chain reaction (PCR) technique and later confirmed via Sanger DNA sequencing.

    RESULTS: Overall, mtDNA was observed in 16 (32%) patients and it was significantly correlated with the type of tumor group and sex, being more common in the HGG group and in male patients.

    CONCLUSION: The prevalence of mtDNA in Malaysian glioma and meningioma cases has been described for the first time and it was, indeed, comparable with previously published studies. This study provides initial insights into mtDNA in brain tumor and these findings can serve as new data for the global mitochondrial DNA mutations database.

  9. Yoong WC, Loke CF, Juan JC, Yusoff K, Mohtarrudin N, Tatsuma T, et al.
    Int J Biol Macromol, 2022 Jan 15;201:516-527.
    PMID: 35041888 DOI: 10.1016/j.ijbiomac.2022.01.062
    We report herein the design and synthesis of colloidally-stable S/Ag1.93S nanoparticles, their photothermal conversion properties and in vitro cytotoxicity toward A431 skin cancer cells under the excitation of a minimally-invasive 980 nm near-infrared (NIR) laser. Micron-sized S particles were first synthesized via acidifying Na2S2O3 using biocompatible sodium alginate as a surfactant. In the presence of AgNO3 and under rapid microwave-induced heating, alginate reduced AgNO3 to nascent Ag which reacted with molten S in situ forming S/Ag1.93S nanoparticles. The nanoparticles were characterized using a combination of X-ray diffraction, electron microscopies, elemental analysis, zeta-potential analysis and UV-VIS-NIR spectroscopy. The average particles size was controlled between 40 and 60 nm by fixing the mole ratio of Ag+:S2O32-. When excited by a 980 nm laser, S/Ag1.93S nanoparticles (~40 nm) produced with the least amount of AgNO3 exhibited a respectable photothermal conversion efficiency of circa 62% with the test aqueous solution heated to a hyperthermia-inducing 52 °C in 15 min. At 0.7 W/cm2, the viability of A431 skin cancer cells incubated with 7.0 ± 0.2 μg/mL of S/Ag1.93S nanoparticles reduced to 14 ± 0.6%, while an A431 cell control maintained an 80% cell viability. These results suggested that S/Ag1.93S nanoparticles may have good potential in reducing metastatic skin carcinoma.
  10. Yik MY, Azlan A, Rajasegaran Y, Rosli A, Yusoff NM, Moses EJ
    Genes (Basel), 2021 07 30;12(8).
    PMID: 34440361 DOI: 10.3390/genes12081188
    The proliferative capacity and continuous survival of cells are highly dependent on telomerase expression and the maintenance of telomere length. For this reason, elevated expression of telomerase has been identified in virtually all cancers, including leukemias; however, it should be noted that expression of telomerase is sometimes observed later in malignant development. This time point of activation is highly dependent on the type of leukemia and its causative factors. Many recent studies in this field have contributed to the elucidation of the mechanisms by which the various forms of leukemias increase telomerase activity. These include the dysregulation of telomerase reverse transcriptase (TERT) at various levels which include transcriptional, post-transcriptional, and post-translational stages. The pathways and biological molecules involved in these processes are also being deciphered with the advent of enabling technologies such as next-generation sequencing (NGS), ribonucleic acid sequencing (RNA-Seq), liquid chromatography-mass spectrometry (LCMS/MS), and many others. It has also been established that TERT possess diagnostic value as most adult cells do not express high levels of telomerase. Indeed, studies have shown that prognosis is not favorable in patients who have leukemias expressing high levels of telomerase. Recent research has indicated that targeting of this gene is able to control the survival of malignant cells and therefore offers a potential treatment for TERT-dependent leukemias. Here we review the mechanisms of hTERT regulation and deliberate their association in malignant states of leukemic cells. Further, we also cover the clinical implications of this gene including its use in diagnostic, prognostic, and therapeutic discoveries.
  11. Yusoff NSN, Mustapha Z, Sharif SET, Govindasamy C, Sirajudeen KNS
    PMID: 28605330 DOI: 10.1615/JEnvironPatholToxicolOncol.2017014521
    Oxidative stress has been suggested to play a role in hypertension- and hypertension-induced organ damage. The effect of antihypertensive drug treatments on oxidative stress markers has not been well assessed. Therefore, in this study we investigated the effect of enalapril on oxidative stress markers in hearts of hypertensive rat models such as spontaneously hypertensive rats (SHR) and SHRs administered N-nitro-L-arginine methyl ester (SHR+L-NAME rats). Male rats were divided into four groups: SHRs, SHR+enalapril (SHR-E) rats, SHR+L-NAME rats, SHR+enalapril+L-NAME (SHRE+L-NAME) rats. Rats (SHREs) were administered enalapril (30 mg kg-1 day-1) in drinking water from week 4 to week 28 and L-NAME (25 mg kg-1 day-1) from week 16 to week 28 in drinking water. At the end of 28 weeks, animals were sacrificed, and their hearts were collected for the assessment of oxidative stress markers and histological examination. Enalapril treatment significantly enhanced the total antioxidant status (TAS) (P < 0.001), reduced the oxidized glutathione ratio (GSH : GSSG) (P < 0.001), and reduced to thibarbituric acid reactive substances (TBARS) (P < 0.001) and protein carbonyl content (PCO) (P < 0.001), which thus reduced the oxidative stress in the heart. The fibrosis areas in SHRs and SHR+L-NAME rats were also markedly reduced. These findings suggest that enalapril might play a protective role in hypertension- and hypertension-induced organ damage.
  12. Ali R, Alabsi AM, Ali AM, Ideris A, Omar AR, Yusoff K, et al.
    Neurochem Res, 2011 Nov;36(11):2051-62.
    PMID: 21671106 DOI: 10.1007/s11064-011-0529-8
    Newcastle disease virus (NDV) is a member of genus Avulavirus within the family Paramyxoviridae. Interest of using NDV as an anticancer agent has arisen from its ability to kill tumor cells with limited toxicity to normal cells. In this investigation, the cytotolytic properties of NDV strain AF2240 were evaluated on brain tumor cell line, anaplastic astrocytoma (U-87MG), by using MTT assay. Cytological observations were studied using fluorescence microscopy and transmission electron microscopy to show the apoptogenic features of NDV on U-87MG. DNA laddering in agarose gel electrophoresis and terminal deoxyribonucleotide transferase-mediated dUTP-X nick end-labeling staining assay confirmed that the mode of cell death was by apoptosis. However, analysis of the cellular DNA content by flowcytometery showed that there was a loss of treated U-87MG cells in all cell cycle phases (G1, S and G2/M) accompanied with increasing in sub-G1 region (apoptosis peak). Early apoptosis was observed 6 h post-inoculation by annexin-V flow-cytometry method. It could be concluded that NDV strain AF2240 is a potent antitumor agent that induce apoptosis and its cytotoxicity increasing while increasing of time and virus titer.
  13. Assa'edah Mahmud A, Zakaria H, Zaliman Mohd Yusoff M, Ruzyanei Nik Jaafar N, Baharudin A, Mohd Tamil A
    Alpha Psychiatry, 2022 Sep;23(5):223-229.
    PMID: 36426271 DOI: 10.5152/alphapsychiatry.2022.21781
    BACKGROUND: The primary purpose of this study is to examine the feasibility of a short-term virtual reality exposure therapy among healthy working adults sample. The secondary aim is to measure the effect of virtual reality exposure therapy on negative and positive emotions by comparing it to the standard stress management program and the wait-list groups.

    METHODS: We enrolled 67 participants allocated into 3 groups to receive virtual reality exposure therapy, standard stress management, or wait-list group. The virtual reality exposure therapy group received a total of a 30-minute exposure to a virtual reality environment over 2 weeks. The standard stress management group received a stress management program once during the study period.

    RESULTS: The results showed a heterogeneous sample, whereby a significantly younger, less-working years, and higher anxiety baseline score were found in the virtual reality exposure therapy group compared to standard stress management and wait-list groups. Nonetheless, the virtual reality exposure therapy group showed a reduction in depression, anxiety, and stress score (P < .001). The standard stress management group showed a reduction in anxiety score only (P = .002), whereas no significant changes were observed in the wait-list group. For positive emotion, all 3 groups showed significant improvement.

    CONCLUSION: Short-term virtual reality exposure therapy is a feasible intervention for the negative and positive emotions; however, cautious interpretation is needed due to significant heterogeneous sample. Replication of study with comparable groups is recommended.

  14. Ahmad-Raus R, Ali AM, Tan WS, Salleh HM, Eshaghi M, Yusoff K
    Res Vet Sci, 2009 Feb;86(1):174-82.
    PMID: 18599098 DOI: 10.1016/j.rvsc.2008.05.013
    A panel of six monoclonal antibodies (mAbs) against the nucleocapsid (NP) protein of Newcastle disease virus (NDV) was produced by immunization of Balb/c mice with purified recombinant NP protein. Western Blot analysis showed that all the mAbs recognized linearized NP epitopes. Three different NP antigenic sites were identified using deleted truncated NP mutants purified from Escherichia coli. One of the antigenic sites was located at the C-terminal end (residues 441 to 489) of the NP protein. Two other antigenic sites were located within the N-terminal end (residues 26-121 and 122-375). This study demonstrates that the N- and C-terminal ends of the NP proteins are responsible in eliciting immune response, thus it is most likely that these ends are exposed on the NP.
  15. Mohamed Yusoff AA, Abd Radzak SM, Mohd Khair SZN, Abdullah JM
    Exp Oncol, 2021 06;43(2):159-167.
    PMID: 34190524
    BACKGROUND: To date, BRAF mutations in brain tumor patients have not been characterized in the Malaysian population. Based on the numerous reported studies, there are main mutations that exist in BRAF gene in various types of cancers. A missense mutation in codon 600 of the BRAF nuclear oncogene (BRAFV600E) is the most prevalent hotspot point mutation that has been identified in multiple human malignancies.

    AIM: We here aimed to find out the frequency of BRAFV600E mutation in a series of Malaysian patients with brain tumors and if any association exists between BRAFV600E mutation and clinicopathological features of patients.

    MATERIAL AND METHODS: Fresh frozen tumor tissue samples from 50 Malaysian brain tumor patients were analyzed for BRAFV600E mutational status, and its correlation with clinicopathological features (including age, gender, and tumor localization such as intra-axial: within the brain substance or extra-axial: outside the brain substance) was examined.

    RESULTS: The overall BRAFV600E mutation frequency was determined to be 22% (in 11 of 50 patients). BRAFV600E was significantly correlated with the tumor location group, which shows BRAFV600E was more frequent in the intra-axial tumor than the extra-axial tumor group. In this study, we also observed that male patients were slightly more susceptible to BRAFV600E mutation, and this mutation was predominant in patients of the age group 

  16. Muhammad Zaki N, Yunus NA, Yusoff MS, Mazlan SA, Abdul Aziz SA, Izni NA, et al.
    Materials (Basel), 2021 Nov 19;14(22).
    PMID: 34832425 DOI: 10.3390/ma14227026
    This paper investigated the effects of petroleum-based oils (PBOs) as a dispersing aid on the physicochemical characteristics of natural rubber (NR)-based magnetorheological elastomers (MREs). The addition of PBOs was expected to overcome the low performance of magnetorheological (MR) elastomers due to their inhomogeneous dispersion and the mobility of magnetic particles within the elastomer matrix. The NR-based MREs were firstly fabricated by mixing the NR compounds homogeneously with different ratios of naphthenic oil (NO), light mineral oil (LMO), and paraffin oil (PO) to aromatic oil (AO), with weight percentage ratios of 100:0, 70:30, 50:50, and 30:70, respectively. From the obtained results, the ratios of NO mixed with low amounts of AO improved the material physicochemical characteristics, such as thermal properties. Meanwhile, LMO mixed the AO led to the best results for curing characteristics, microstructure observation, and magnetic properties of the MREs. We found that the LMO mixed with a high content of AO could provide good compatibility between the rubber molecular and magnetic particles due to similar chemical structures, which apparently enhance the physicochemical characteristics of MREs. In conclusion, the 30:70 ratio of LMO:AO is considered the preferable dispersing aid for MREs due to structural compounds present in the oil that enhance the physicochemical characteristics of the NR-based MREs.
  17. Tan HT, Yusoff FM, Khaw YS, Ahmad SA, Shaharuddin NA
    Plants (Basel), 2021 Nov 01;10(11).
    PMID: 34834721 DOI: 10.3390/plants10112358
    Phycobiliproteins are gaining popularity as long-term, high-value natural products which can be alternatives to synthetic products. This study analyzed research trends of phycobiliproteins from 1909 to 2020 using a bibliometric approach based on the Scopus database. The current findings showed that phycobiliprotein is a burgeoning field in terms of publications outputs with "biochemistry, genetics, and molecular biology" as the most related and focused subject. The Journal of Applied Phycology was the most productive journal in publishing articles on phycobiliproteins. Although the United States of America (U.S.A.) contributed the most publications on phycobiliproteins, the Chinese Academy of Sciences (China) is the institution with the largest number of publications. The most productive author on phycobiliproteins was Glazer, Alexander N. (U.S.A.). The U.S.A. and Germany were at the forefront of international collaboration in this field. According to the keyword analysis, the most explored theme was the optimization of microalgae culture parameters and phycobiliproteins extraction methods. The bioactivity properties and extraction of phycobiliproteins were identified as future research priorities. Synechococcus and Arthrospira were the most cited genera. This study serves as an initial step in fortifying the phycobiliproteins market, which is expected to exponentially expand in the future. Moreover, further research and global collaboration are necessary to commercialize phycobiliproteins and increase the consumer acceptability of the pigments and their products.
  18. Khairul Zaman N, Rohani R, Izni Yusoff I, Kamsol MA, Basiron SA, Abd Rashid AI
    PMID: 34501755 DOI: 10.3390/ijerph18179164
    The evaluation of complex organic and inorganic coagulant's performances and their relationships could compromise the surface water treatment process time and its efficiency. In this work, process optimization was investigated by comparing an eco-friendly chitosan with the industrially used coagulants namely aluminum sulfate (alum), polyaluminum chloride (PAC), and aluminum chlorohydrate (ACH) in compliance with national drinking water standards. To treat various water samples from different treatment plants with turbidity and pH ranges from 20-826.3 NTU and 5.21-6.80, respectively, 5-20 mg/L coagulant dosages were varied in the presence of aluminum, ferum, and manganese. Among all, 10 mg/L of the respective ACH and chitosan demonstrated 97% and 99% turbidity removal in addition to the removal of the metals that complies with the referred standard. However, chitosan owes fewer sensitive responses (turbidity and residual metal) with the change in its input factors (dosage and pH), especially in acidic conditions. This finding suggested its beneficial role to be used under the non-critical dosage monitoring. Meanwhile, ACH was found to perform better than chitosan only at pH > 7.4 with half dosage required. In summary, chitosan and ACH could perform equally at a different set of optimum conditions. This optimization study offers precise selections of coagulants for a practical water treatment operation.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links