Wound management and healing in several physiological or pathological conditions, particularly when comorbidities are involved, usually proves to be difficult. This presents complications leading to socio-economic and public health burdens. The accelerative wound healing potential of biocompatible poly(3-hydroxyalkanoates)-co-(6-hydroxyhexanoate) (PHA-PCL) composite hydrogel is reported herein. The biosynthesized PHA-PCL macromer was cross-linked with PEGMA to give a hydrogel. Twenty-four rats weighing 200-250 g each were randomly assigned to four groups of six rats. Rats in group I (negative control) were dressed with sterilized gum acacia paste in 10% normal saline while PEGMA-alone hydrogel (PH) was used to dress group II (secondary control) rats. Group III rats were dressed with PHAs-PCL cross-linked PEGMA hydrogel (PPH). For the positive control (group IV), the rats were dressed with Intrasite(®) gel. Biochemical, histomorphometric and immunohistomorphometric analyses revealed a significant difference in area closure and re-epithelialization on days 7 and 14 in PPH or Intrasite(®) gel groups compared to gum acacia or PEGMA-alone groups. Furthermore, wounds dressed with PPH or Intrasite(®) gel showed evident collagen deposition, enhanced fibrosis and extensively organized angiogenesis on day 14 compared to the negative control group. While improvement in wound healing of the PH dressed group could be observed, there was no significant difference between the negative control group and the PH dressed group in any of the tests. The findings suggested that topical application of PPH accelerated the rats' wound healing process by improving angiogenesis attributed to the increased microvessel density (MVD) and expressions of VEGF-A in tissue samples. Thus, PPH has been demonstrated to be effective in the treatment of cutaneous wounds in rats, and could be a potential novel agent in the management and acceleration of wound healing in humans and animals.
The 11beta-hydroxysteroid dehydrogenase (11beta-HSD) protects the testis from the inhibitory effects of corticosterone on testosterone (T) production. The objectives of the present studies were to determine the effects of deoxycorticosterone (DOC) and its mechanism of actions on testicular 11beta-HSD activity and plasma T levels after 7 days of treatment. The results revealed that at the end of 7 days treatment, DOC significantly increased testicular 11beta-HSD activity and plasma T levels in normal rats. However, the time course showed that high plasma T levels lowered 11beta-HSD activity on day 14 and by 21 days both the levels normalized. In adrenalectomized (ADX) rats, only the enzyme activity increased significantly but not plasma T levels. Spironolactone, a competitive inhibitor of mineralocorticoid receptor (MR), did not change testicular 11beta-HSD activity in both normal and DOC treated rats suggesting that DOC did not act through MR in increasing 11beta-HSD activity. On the other hand, spironolactone significantly decreased plasma T levels in DOC treated rats. Progesterone (P), a competitive inhibitor of glucocorticoid receptors (GR) or corticosterone significantly suppressed testicular enzyme activity and plasma T levels in DOC treated normal rats. Carbenoxolone which is an inhibitor of 11beta-HSD activity significantly depressed testicular 11beta-HSD activity and plasma T levels in DOC treated normal rats. This paper suggests that DOC increased testicular 11beta-HSD activity through GR; whilst increase in plasma T levels required functioning adrenal glands. The testicular 11beta-HSD is one of the regulators of T levels and vice versa.
The present study was conducted to examine the effect of bradykinin and bradykinin 2 receptor antagonist on survival time in rats with coronary artery ligation for 15 min and continuously. We also evaluated the heart rate and blood pressure responses in the presence and absence of bradykinin and its antagonist. Bradykinin treatment (4 microg and 8 microg/kg IV) significantly (p < 0.05) increased the survival time of rats compared with saline-treated rats with coronary artery ligation for 15 min and continuously. The heart rate and blood pressure responses were significantly (p < 0.001) altered in the presence of coronary artery ligation. Bradykinin antagonist treatment (4 microg/kg IV) abolished the effect of bradykinin and thus reduced the survival time of rats with coronary artery ligation. The mean value of survival time between saline-treated and bradykinin antagonist- plus bradykinin-treated rats did not differ significantly (p > 0.05).
This study determined the effects of palm vitamin E (TRF) diet on the levels of blood glucose, glycated hemoglobin (gHb), serum advanced glycosylation end-products (AGE) and malondialdehyde (MDA) of diabetic Sprague-Dawley rats. The rats received either control (normal rat chow), TRF diet (normal chow fortified with TRF at 1 g/kg) or Vitamin C diet (vitamin E-deficient but contained vitamin C at 45 g/kg). The animals were maintained on the respective diet for 4 weeks, made diabetic with streptozotocin (STZ), then followed-up for a further 8 weeks. At week-4, mean serum AGE levels of rats given TRF diet (0.7 +/- 0.3 units/ml) were significantly lower than those of control or Vitamin C diet rats (p pounds 0.03). The levels increased after STZ and became comparable to the other groups. At week 12, blood glucose (20.9 +/- 6.9 mM) and gHb (10.0 +/- 1.6%) of rats on TRF diet remained significantly low compared to that of control or Vitamin C diet rats (p pounds 0.03). MDA however, was not affected and remained comparable between groups throughout the study. This study showed that TRF may be a useful antioxidant; effectively prevented increase in AGE in normal rats, and caused decrease in blood glucose and gHb in diabetic rats. Further studies are needed to elucidate the mechanisms of action of TRF.
The influence of copper (Cu) overload on hepatic lipid peroxidation and antioxidation defense capacity was studied by overloading rats with copper sulphate orally (500 mg Cu/kg bw) 5 d/w for 8 w. Malondialdehyde (MDA), Cu-Zn superoxide dismutase (SOD), and Se-glutathione peroxidase (GSH-Px) were measured in serum and liver homogenate at 2, 4 and 8 w of dosing. Liver Cu concentration and alanine aminotransferase (ALT) activity were also determined. As Cu loading progressed, there were multiparameter changes with significant ALT elevation, increased MDA concentrations in serum and liver homogenate, and dramatic declines of SOD and GSH-Px activities in erythrocytes and whole blood respectively, along with marked elevation of hepatic Cu in the Cu-dosed group. Excessive Cu accumulation in the liver depressed SOD and GSH-Px activities and resulted in high MDA in serum and liver homogenate due to the lipid peroxidation induced by the Cu overload.
Channa striatus, a fresh water snakehead fish, is reported to enhance dermal wound healing. Biochemical components such as amino acids and fatty acids are important for the synthesis of collagen fibers during wound healing. Arachidonic acid, a precursor of prostaglandin plays a vital role in healing the wounds. Haruan (C. striatus) contains all the essential amino acids for wound healing particularly glycine as well as high contents of arachidonic acid and polyunsaturated fatty acids that can promote prostaglandin synthesis. In the present work we have studied the wound healing effect of C. striatus in Sprague-Dawley rats. Cream formulations having different haruan fish extract concentrations as the active ingredient were prepared and stabilized, and they were applied to the wounds. The healing of wounds was characterized by an increase in the tensile strength of the skin, determined on the 7th post-operative day in each case. Haruan treatment of wounds promotes remodeling of collagen, by the synthesis of inter- and intra-molecular protein crosslinking and thus produces a marked increase (P<0.05) in tensile strength as compared to the cetrimide treated group. On the basis of our experiment we conclude that C. striatus helps in wound healing as indicated by the increase in tensile strength. We hypothesise that this effect may be due to its high content of arachidonic acid, glycine and polyunsaturated fatty acids. The mechanism of wound healing will be investigated in future studies.
The effects of stress and corticosterone on testicular 11beta-hydroxysteroid dehydrogenase (11beta-HSD) oxidative activity have been controversial, whilst that of adrenocorticotrophic hormone (ACTH) have not been investigated before. Hence, the aim of the present study was to determine the in vivo effects of stress due to injection and sham operation, ACTH and corticosterone on testicular and hepatic 11beta-HSD oxidative activity and plasma testosterone levels in normal and adrenalectomized (ADX) rats and their possible mechanism of actions. Adrenalectomy reduced both testicular 11beta-HSD oxidative activity and plasma testosterone levels. The effects of injection and sham operation significantly increased plasma corticosterone levels with decreased testicular 11beta-HSD oxidative activity and plasma testosterone levels in normal but not in ADX rats. Likewise. ACTH or corticosterone treatment for 7 days decreased both testicular 11beta-HSD oxidative activity in a dose dependent manner and plasma testosterone levels in normal rats; but the values in ADX rats remained unchanged. However, none of the above values were significantly lower than that of the ADX levels. Corticosterone seems to maintain testicular 11beta-HSD oxidative activity within the range between normal and ADX rats. These changes are not attributable to diurnal rhythms, as the time of sacrifice has been fixed between 8:30 and 10:30 am. In the liver, no significant change in 11beta-HSD oxidative activity was observed with sham operation, ACTH or corticosterone treatment; but adrenalectomy significantly decreased it. In conclusion, in the intact normal rats, stress, ACTH or corticosterone modulates testicular (but not hepatic) 11beta-HSD oxidative activity indirectly through the adrenal glands and the physiological level of corticosterone is ideal for normal reproductive functions.
Vitamin E has been shown to affect bone metabolism. In this study we determined the effects of palm vitamin E and alpha-tocopherol on bone metabolism. Sprague-Dawley female rats fed with normal rat chow were divided into 4 groups and supplemented with either palm vitamin E 30 mg/kg rat weight, palm vitamin E 60 mg/kg rat weight or alpha-tocopherol 30 mg/kg rat weight. One group was not supplemented. Half of these rats were ovariectomised before supplementation was given for 10 months. As expected, bone mineral density of the ovariectomised rats fed on normal rat chow diet was lower compared to the intact rats. However, these changes were not seen in the supplemented group of rats. Both intact and ovariectomised rats supplemented with palm vitamin E 30 mg/kg rat weight had a lower bone calcium content in both femoral and vertebral bones whilst rats fed palm vitamin E 60 mg/kg rat weight or alpha-tocopherol 30 mg/kg rat weight were able to maintain bone calcium content. Alkaline phosphatase activity was elevated in ovariectomised rats supplemented with palm vitamin E 30 mg/kg rat weight and alpha-tocopherol 30 mg/kg rat weight compared to the intact rats. Alpha-tocopherol also reduced the activity of tartrate-resistant acid phosphatase post-ovariectomy. These findings indicate that both palm vitamin E and alpha-tocopherol maintained bone mineral density in ovariectomised rats but caused conflicting effects on bone calcium content. Further study is needed in order to determine the mechanisms involved.
11Beta-hydroxysteroid dehydrogenase (11beta-HSD) Type I enzyme is found in testis and liver. In Leydig cell cultures, 11beta-HSD activity is reported to be primarily oxidative while another report concluded that is primarily reductive. Hepatic 11beta-HSD preferentially catalyzes reduction and the reaction direction is unaffected by the external factors. Recent analysis of testicular 11beta-HSD revealed two kinetically distinct components. In the present study, various steroid hormones or glycyrrhizic acid (GCA), given for 1 week, or thyroxine given for 5 weeks to normal intact rats had different effects on the 11beta-HSD oxidative activity in testis and liver. Deoxycorticosterone, dexamethasone, progesterone, thyroxine, and clomiphene citrate increased testicular 11beta-HSD oxidative activity, but decreased hepatic enzyme activity except for deoxycorticosterone (unchanged). Corticosterone and testosterone decreased 11beta-HSD oxidative activity in testis but not that of liver (which was unchanged). Estradiol, GCA and adrenalectomy lowered oxidative activity of 11beta-HSD in testis and liver, but the degrees of reduction were different. The in vivo effects of glucocorticoids too were different, even in the same organ. Dexamethasone, a pure glucocorticoid, has greater affinity for glucocorticoid receptors (GR) than corticosterone. The direct effects of dexamethasone via GR in increasing testicular 11beta-HSD oxidative activity may override its indirect effects. Possibly, the reverse occurs with corticosterone treatment, as it has both glucocorticoid and mineralocorticoid effects. Because both organs have Type I isoenzyme, the difference in 11beta-HSD oxidative activities of these two organs could be attributable to the presence of an additional isozyme in testis or differences in tissue-specific regulatory mechanisms.
The effect of palm vitamin E on the healing of ethanol-induced gastric lesion was compared with ranitidine. Fifty-six male rats of Sprague-Dawley species (200-250 g of weight) were randomly divided into three groups (N = 14). Gastric mucosal injury was induced by orogastric tube administration of 0.5 ml 100% ethanol. Immediately after induction, Group I (k) rats was fed with a normal diet (control), group II (p) was fed palm vitamin E enriched diet (150 mg/kg food), Group III(r) was treated with ranitidine 30 mg/kg body weight intraperitoneally and Group IV (p + r) was fed with palm vitamin E and treated with ranitidine 30 mg/kg body weight intraperitoneally of the same dose. The rats were killed at the end of 1 week and 3 weeks of treatment or feeding. The rate of gastric healing was faster in palm vitamin E treated group compared to control and ranitidine treated groups as shown by a lower mean ulcer index. The effect was seen as early as the first week of treatment whereas ranitidine did not show any healing effect even after 3 weeks of therapy. Neither gastric acidity nor gastric mucus production are involved in gastroprotective effect of palm vitamin E. The most probable mechanism is via reducing lipid peroxidation process as shown by a significant decrease in gastric MDA.
The toxicities of ROUNDUP and its component chemicals, glyphosate (N-phosphonomethylglycine) and polyoxyethyleneamine (POEA), were determined at 0, 1, 3, 6 and 24 h following administration to rats. The intratracheal administration of glyphosate (0.2 g/kg), POEA (0.1 g/kg), a mixture of glyphosate (0.2 g/kg) + POEA (0.1 g/kg), or ROUNDUP (containing 0.2 g/kg glyphosate and 0.1 g/kg POEA) elicited immediate respiratory effects which were more severe and which lasted longer in the groups receiving the POEA-containing preparations than in the glyphosate alone group. By 1 h, all test preparations had caused deaths, but more occurred from the POEA-containing preparations than from glyphosate. The po administration of POEA (1 g/kg), the mixture of glyphosate (2 g/kg) +POEA (1 g/kg), or ROUNDUP (containing 2 g/kg glyphosate and 1 g/kg POEA) produced diarrhea and blood-stained weeping from noses. Death was only seen from POEA at 24 h. Glyphosate (2 g/kg po) produced transient diarrhea without nose bleeds; POEA caused diarrhea at 1 h; and the mixture of POEA + glyphosate produced diarrhea later that increased in severity with time. Bloody nose secretions were seen only with the preparations that contained POEA. No deaths, respiratory effects or bloody nose secretions occurred in controls given saline. Both POEA and glyphosate caused lung hemorrhages and lung epithelial cell damage with po or intratracheal exposures. These results indicate POEA and preparations that contained POEA were more toxic than glyphosate.
Gonadectomized male albino rats aged 7 weeks were given 1.5 mg/kg testosterone propionate daily and inoculated with 50 third-stage larvae of Angiostrongylus malaysiensis. The treatment significantly increased the number of larvae and adult worms recovered from the brain and pulmonary arteries, respectively, and the rats exhibited smaller thymus glands. The total numbers of leukocytes, monocytes, neutrophils, and especially eosinophils increased significantly post-infection, but the counts were higher in the untreated infected controls. Presumably, immunosuppressive effects of testosterone may at least partly be responsible for the higher loads of A. malaysiensis worms found in male rats as compared with females in the field.
This study tested the possibility of adrenal autotransplantation in rats. Since the cortex and the medulla of the adrenal gland were from different origin embryologically, either whole adrenal glands (ADR), or capsule and cortex (CAP) or medulla (MED) were autotransplanted in the subcutaneous tissue. The functions of regenerated adrenal nodules were tested by measuring plasma corticosterone levels every fortnight. At the end of 9 weeks the rats were exposed to hypovolemic shock followed by naloxone injection to reverse the shock response. Results showed that rats transplanted with either cortex or whole adrenal started secreting corticosterone at 5 weeks post-transplantation (107.73 +/- 21.98 ng/ml, 126.04 +/- 48.41 ng/ml, respectively). Corticosterone levels increased to the value which were not significantly different from control by 9 weeks post-transplantation. However, rats transplanted with adrenal medulla showed very low corticosterone levels. Nine weeks post-transplantation, the mean blood pressure (MBP) of the CAP group was 135 +/- 13 mmHg and was not significantly different from sham-operated controls, whereas MBP of MED group was significantly lower than sham-operated animals (99 +/- 11 mmHg versus 141 +/- 9 mmHg). The MBP of the ADR group was also lower compared to sham-operated controls (112 +/- 17 mmHg P < 0.05). The MBP of the adrenal group was not statistically significant compared to the CAP group. After 1% body weight haemorrhage, the MBP decreased significantly in ADR (45 +/- 5 mmHg, P < 0.05) and MED group (36 +/- 9 mmHg, P < 0.001) compared to sham-operated rats (78 +/- 11 mmHg) but not in the CAP (56 +/- 9 mmHg). It was concluded that autotransplanted whole adrenal or adrenocortical tissues survived subcutaneously and produced sufficient corticosterone to alleviate haemorrhagic shock. Adrenal medullary tissue failed to regenerate subcutaneously and the presence of adrenal medullary tissue may suppressed the growth of transplanted adrenal gland.
Paddy (unmilled rice), milled rice and maize-bound 14C residues were prepared using 14C-succinate-labelled malathion at 10 and 152 ppm. After 3 months, the bound residues accounted for 12%, 6.5% and 17.7% of the applied dose in paddy, milled rice and maize respectively in the grains treated at 10 ppm. The corresponding values for the 152 ppm were 16.6%, 8.5% and 18.8%. Rats fed milled rice - bound 14C-residues eliminated 61% of the 14C in the faeces and 28% in the urine. The corresponding percentages for paddy and maize were 72%, 9% and 53%, 41% respectively; indicating that bound residues from milled rice and maize were moderately bioavailable. When rice-bound malathion residues (0.65 ppm in feed) were administered to rats in a 5 week feeding study, no signs of toxicity were observed. Plasma and RBC cholinesterase activities were slightly inhibited: blood urea nitrogen was significantly elevated in the test animals. Other parameters examined showed no or marginal changes.
Sidaverin, a crystalline compound extracted from a polar fraction of Sida veronicaefolia (Lam), elicited oxytocin-like contractions in the non-gravid rat isolated uterus preparation with a concentration-response relationship. Equipotent concentrations of oxytocin and sidaverin, using matched responses, were approximately 0.16 U and 0.4 micrograms ml-1, respectively. Sidaverin-induced contractile response was atropine reversible. The concentration-response curves for sidaverin and oxytocin were parallel, and both responses were inhibited by the specific oxytocin antagonist, Atosiban, indicating possible involvement of oxytocin receptors in the action of sidaverin. There were potentiation of action of one drug to that of the other, irrespective of the order of administration and even after washing off the first before introducing the second drug. In the gravid uterus, sidaverin produced contractions in preparations from day 1 to day 6 or 7, caused relaxation in days 7-11, and elicited contractions in day 11 through term, the sensitivity of the preparations increasing exponentially toward term with strong sustained contractions. With the exception of days 7-11, when sidaverin antagonized oxytocin action, it potentiated action of oxytocin on the gravid uterus.
1. Sex steroids have been shown to regulate the biosynthesis of 11 beta-hydroxysteroid dehydrogenase (11 beta-HSD). 2. In vitro studies showed that oestradiol (E2) or testosterone (T) can interfere with the bioassay of enzyme activity, but not progesterone (P4). 3. For in vivo studies, the activity of 11 beta-HSD in the testis of normal and adrenalectomized (ADX) adult male Wistar rats was determined following a daily IM injection of sex steroids for 7 days. 4. The 11 beta-HSD activity was significantly reduced (P < 0.01) either by E2 or T in normal and ADX rats. The enzyme activity in normal rats given both T and E2 was even lower (P < 0.001) than when E2 was given alone. 5. P4 given to normal and ADX rats increased the enzyme activity higher than normal (P < 0.001). 6. The presence of corticosteroids influenced the effects of E2, but not of T and P4, on 11 beta-HSD activity. 7. E2 and T downregulate 11 beta-HSD activity, whereas P4 increased it. E2 did not act through lowering T level.
The present investigation evaluated the effects of aprotinin, an inhibitor of kallikrein, on blood pressure responses, heart rate, and duration of hypotension induced by acute administration of captopril and enalapril (angiotensin-converting enzyme inhibitors) in anaesthetized spontaneously hypertensive rats. Captopril (20 mg/kg) and enalapril (20 mg/kg) administered intravenously caused a significant (p < 0.001) fall in systolic and diastolic blood pressures in the absence of aprotinin. In contrast, captopril (20 mg/kg) and enalapril (20 mg/kg) failed (p > 0.05) to cause a fall in systolic and diastolic blood pressures in the presence of aprotinin (2 mg/kg). Captopril and enalapril were able to significantly reduce the heart rate (p < 0.05 and p < 0.001) in the presence as well as in the absence of aprotinin. The duration of hypotension produced by captopril and enalapril was abolished significantly (p < 0.001) in the presence of aprotinin. These findings may suggest that captopril and enalapril caused hypotension via the kallikrein pathway, since the kallikrein inhibitor aprotinin can antagonize the hypotensive responses of these agents. Thus, kallikrein may be an independent mediator in the regulation of blood pressure.
Gonadectomized male laboratory rats were given 0.06 mg/kg estradiol benzoate daily for 14 days before being inoculated with 50 third-stage larvae of Parastrongylus malaysiensis. Hormone treatment was continued until the rats were killed. The numbers of larvae in the brain and of adult worms in the pulmonary area of the rats were determined every 7 days after the inoculation. It was found that the rats treated daily with estradiol benzoate had significantly and consistently higher numbers of larvae and adult worms as compared with the controls. The number of total leukocytes increased significantly after the rats were infected. The results show that estradiol-treated rats become susceptible to P. malaysiensis infection, which may indicate that the immunosuppressive effects of testosterone observed in earlier studies may partly be caused by estradiol that was peripherally aromatized from testosterone.
Among several alkaloids, including dimeric indoles, isolated from Uncaria callophylla, gambirine which is an alkaloid unique to this plant, has been found to be another hypotensive principle from the plant. Intravenous injections of gambirine in the dose range of 0.2 to 10.0 mg/kg caused a dose-related fall in both systolic and diastolic blood pressures as well as heart rate. At all doses gambirine showed a prompt onset of action and at the higher doses (5.0-10 mg/kg), marked persistence of hypotension accompanied by severe bradycardia were observed. In addition, higher doses of gambirine produced a more marked decrease in diastolic than systolic pressure while at lower doses both decreased equally. It is suggested that the hypotensive effect of gambirine may be peripheral in origin and is associated, at least in part, with a cardiac action.
Early studies reported that a styrylpyrone derivative (SPD) purified from the Goniothalamus sp. acts as a non-competitive antiestrogen in early pregnant mice (1). In the immature rat uterine wet weight test, we found that SPD markedly reduced uterine weight at doses 1 and 100 mg/kg, thus reflecting negative antiestrogenicity, probably attributed to low binding affinities towards ER. Tamoxifen (Tam) on the other hand exhibited partial antiestrogenicity at all doses (0.01-10 mg/kg BW) and dose-dependent estrogenicity. However, the estrogen antagonism: agonism ratio for SPD is much higher than Tam, which is indicative of the breast cancer antitumor activity as seen in compounds such as MER-25. Pretreatment assessment on 1 mg/kg BW SPD and Tam showed that SPD is not a very good, estrogen antagonist compared to Tam, as it was unable to revert the estrogenicity effect of estradiol benzoate (EB) on immature rat uterine weight. Antitumor activity assessment for SPD exhibited significant tumor growth retardation in 7,12-dimethyl benzanthracene (DMBA) induced rat mammary tumors at all doses employed (2, 10 and 50 mg/kg) compared to the controls (p < 0.01). This compound was found to be more potent than Tam (2 and 10 mg/kg) and displayed greater potency at a dose of 10 mg/kg. It caused complete remission of 33.3% of tumors but failed to prevent onset of new tumors. However, SPD administration at 2 mg/kg caused 16.7% complete remission and partial remission. It also prevented the onset of new tumors throughout the experiment.