Displaying publications 101 - 120 of 432 in total

Abstract:
Sort:
  1. Nori J, Gill MK, Meattini I, Delli Paoli C, Abdulcadir D, Vanzi E, et al.
    Biomed Res Int, 2018;2018:9141746.
    PMID: 29992167 DOI: 10.1155/2018/9141746
    Background and Objectives: Breast-conserving surgery represents the standard of care for the treatment of small breast cancers. However, there is a population of patients who cannot undergo the standard surgical procedures due to several reasons such as age, performance status, or comorbidity. Our aim was to investigate the feasibility and safety of percutaneous US-guided laser ablation for unresectable unifocal breast cancer (BC).

    Methods: Between December 2012 and March 2017, 12 consecutive patients underwent percutaneous US-guided laser ablation as radical treatment of primary inoperable unifocal BC.

    Results: At median follow-up of 28.5 months (range 6-51), no residual disease or progression occurred; the overall success rate for complete tumor ablation was therefore 100%. No significant operative side effects were observed, with only 2 (13.3%) experiencing slight to mild pain during the procedure, and all patients complained of a mild dull aching pain in the first week after procedure.

    Conclusions: Laser ablation promises to be a safe and feasible approach in those patients who are not eligible to the standard surgical approach. However, longer follow-up results and larger studies are strongly needed.

  2. Appalasamy S, Lo KY, Ch'ng SJ, Nornadia K, Othman AS, Chan LK
    Biomed Res Int, 2014;2014:215872.
    PMID: 24575401 DOI: 10.1155/2014/215872
    Artemisia annua L., a medicinal herb, produces secondary metabolites with antimicrobial property. In Malaysia due to the tropical hot climate, A. annua could not be planted for production of artemisinin, the main bioactive compound. In this study, the leaves of three in vitro A. annua L. clones were, extracted and two bioactive compounds, artemisinin and a precursor, were isolated by thin layer chromatography. These compounds were found to be effective in inhibiting the growth of Gram-positive and Gram-negative bacteria but not Candida albicans. Their antimicrobial activity was similar to that of antibactericidal antibiotic streptomycin. They were found to inhibit the growth of the tested microbes at the minimum inhibition concentration of 0.09 mg/mL, and toxicity test using brine shrimp showed that even the low concentration of 0.09 mg/mL was very lethal towards the brine shrimps with 100% mortality rate. This study hence indicated that in vitro cultured plantlets of A. annua can be used as the alternative method for production of artemisinin and its precursor with antimicrobial activities.
  3. Nissapatorn V, Sawangjaroen N, Lee R, Chandra Parija S
    Biomed Res Int, 2014;2014:780715.
    PMID: 25587540 DOI: 10.1155/2014/780715
  4. Berahim Z, Omar MH, Zakaria NI, Ismail MR, Rosle R, Roslin NA, et al.
    Biomed Res Int, 2021;2021:6679787.
    PMID: 34159198 DOI: 10.1155/2021/6679787
    The PadiU Putra rice line is a blast-resistant and high-yield rice line with high potential. The application of topdressing and the foliar applied method of silicon (Si) treatments could strengthen the culm to resist breakage and ultimately increase yield production. Treatments which consisted of a control, a Si topdressing, and a Si foliar applied were arranged in a randomised complete block design. At 55 days after transplanting (DAT), the foliar applied Si treatments had 59% higher dry matter partitioning to the roots. Meanwhile, at 75 DAT, both Si foliar applied and topdressing method showed increased assimilate partitioning into the culm sheath by 29% and 49%, respectively. Dark green and light yellowish colours were obtained in both Si treatments using UAV, indicating similar results to physiological responses. Remarkably, Si foliar applied treatments enhanced the diameter and width of the outer and inner layers of the diameter of vascular bundles at 75 DAT by 58, 181, and 80%, respectively. The yield production of rice increased by 53% in the Si foliar applied, compared to the control, and produced a 1.63 benefit-cost ratio.
  5. Foo KY, Chee HY
    Biomed Res Int, 2015;2015:427814.
    PMID: 26347881 DOI: 10.1155/2015/427814
    Flaviviruses are potentially human pathogens that cause major epidemics worldwide. Flavivirus interacts with host cell factors to form a favourable virus replication site. Cell cytoskeletons have been observed to have close contact with flaviviruses, which expands the understanding of cytoskeleton functions during virus replication, although many detailed mechanisms are still unclear. The interactions between the virus and host cytoskeletons such as actin filaments, microtubules, and intermediate filaments have provided insight into molecular alterations during the virus infection, such as viral entry, in-cell transport, scaffold assembly, and egress. This review article focuses on the utilization of cytoskeleton by Flavivirus and the respective functions during virus replication.
  6. Tan AA, Phang WM, Gopinath SC, Hashim OH, Kiew LV, Chen Y
    Biomed Res Int, 2015;2015:453289.
    PMID: 26167486 DOI: 10.1155/2015/453289
    Breast cancer is one of the major issues in the field of oncology, reported with a higher prevalence rate in women worldwide. In attempt to reveal the potential biomarkers for breast cancer, the findings of differentially glycosylated haptoglobin and osteonectin in previous study have drawn our attention towards glycoproteins of secretome from the MCF-7 cancer cell line. In the present study, further analyses were performed on the medium of MCF-7 cells by subjecting it to two-dimensional analyses followed by image analysis in contrast to the medium of human mammary epithelial cells (HMEpC) as a negative control. Carboxypeptidase A4 (CPA4), alpha-1-antitrypsin (AAT), haptoglobin (HP), and HSC70 were detected in the medium of MCF-7, while only CPA4 and osteonectin (ON) were detected in HMEpC medium. In addition, CPA4 was detected as upregulated in the MCF-7 medium. Further analysis by lectin showed that CPA4, AAT, HP, and HSC70 were secreted as N-glycan in the medium of MCF-7, with HP also showing differentially N-glycosylated isoforms. For the HMEpC, only CPA4 was detected as N-glycan. No O-glycan was detected in the medium of HMEpC but MCF-7 expressed O-glycosylated CPA4 and HSC70. All these revealed that glycoproteins could be used as glycan-based biomarkers for the prognosis of breast cancer.
  7. Faseleh Jahromi M, Liang JB, Ho YW, Mohamad R, Goh YM, Shokryazdan P, et al.
    Biomed Res Int, 2013;2013:604721.
    PMID: 23710454 DOI: 10.1155/2013/604721
    Lovastatin, a natural byproduct of some fungi, is able to inhibit HMG-CoA (3-hydroxy-3 methyl glutaryl CoA) reductase. This is a key enzyme involved in isoprenoid synthesis and essential for cell membrane formation in methanogenic Archaea. In this paper, experiments were designed to test the hypothesis that lovastatin secreted by Aspergillus terreus in fermented rice straw extracts (FRSE) can inhibit growth and CH4 production in Methanobrevibacter smithii (a test methanogen). By HPLC analysis, 75% of the total lovastatin in FRSE was in the active hydroxyacid form, and in vitro studies confirmed that this had a stronger effect in reducing both growth and CH4 production in M. smithii compared to commercial lovastatin. Transmission electron micrographs revealed distorted morphological divisions of lovastatin- and FRSE-treated M. smithii cells, supporting its role in blocking normal cell membrane synthesis. Real-time PCR confirmed that both commercial lovastatin and FRSE increased (P < 0.01) the expression of HMG-CoA reductase gene (hmg). In addition, expressions of other gene transcripts in M. smithii. with a key involvement in methanogenesis were also affected. Experimental confirmation that CH4 production is inhibited by lovastatin in A. terreus-fermented rice straw paves the way for its evaluation as a feed additive for mitigating CH4 production in ruminants.
  8. Mohammad AH, Al-Sadat N, Siew Yim L, Chinna K
    Biomed Res Int, 2014;2014:302097.
    PMID: 25276774 DOI: 10.1155/2014/302097
    This study aims to test the translated Hausa version of the stroke impact scale SIS (3.0) and further evaluate its psychometric properties. The SIS 3.0 was translated from English into Hausa and was tested for its reliability and validity on a stratified random sample adult stroke survivors attending rehabilitation services at stroke referral hospitals in Kano, Nigeria. Psychometric analysis of the Hausa-SIS 3.0 involved face, content, criterion, and construct validity tests as well as internal and test-retest reliability. In reliability analyses, the Cronbach's alpha values for the items in Strength, Hand function, Mobility, ADL/IADL, Memory and thinking, Communication, Emotion, and Social participation domains were 0.80, 0.92, 0.90, 0.78, 0.84, 0.89, 0.58, and 0.74, respectively. There are 8 domains in stroke impact scale 3.0 in confirmatory factory analysis; some of the items in the Hausa-SIS questionnaire have to be dropped due to lack of discriminate validity. In the final analysis, a parsimonious model was obtained with two items per construct for the 8 constructs (Chi-square/df < 3, TLI and CFI > 0.9, and RMSEA < 0.08). Cross validation with 1000 bootstrap samples gave a satisfactory result (P = 0.011). In conclusion, the shorter 16-item Hausa-SIS seems to measure adequately the QOL outcomes in the 8 domains.
  9. Gopinath SC, Anbu P, Arshad MK, Lakshmipriya T, Voon CH, Hashim U, et al.
    Biomed Res Int, 2017;2017:1272193.
    PMID: 28280725 DOI: 10.1155/2017/1272193
    Amylase is an important and indispensable enzyme that plays a pivotal role in the field of biotechnology. It is produced mainly from microbial sources and is used in many industries. Industrial sectors with top-down and bottom-up approaches are currently focusing on improving microbial amylase production levels by implementing bioengineering technologies. The further support of energy consumption studies, such as those on thermodynamics, pinch technology, and environment-friendly technologies, has hastened the large-scale production of the enzyme. Herein, the importance of microbial (bacteria and fungi) amylase is discussed along with its production methods from the laboratory to industrial scales.
  10. Hussain H, Chong NF
    Biomed Res Int, 2016;2016:8041532.
    PMID: 27995143
    The combined overlap extension PCR (COE-PCR) method developed in this work combines the strengths of the overlap extension PCR (OE-PCR) method with the speed and ease of the asymmetrical overlap extension (AOE-PCR) method. This combined method allows up to 6 base pairs to be mutated at a time and requires a total of 40-45 PCR cycles. A total of eight mutagenesis experiments were successfully carried out, with each experiment mutating between two to six base pairs. Up to four adjacent codons were changed in a single experiment. This method is especially useful for codon optimization, where doublet or triplet rare codons can be changed using a single mutagenic primer set, in a single experiment.
  11. Lee YV, Wahab HA, Choong YS
    Biomed Res Int, 2015;2015:895453.
    PMID: 25649791 DOI: 10.1155/2015/895453
    Isocitrate lyase (ICL) is the first enzyme involved in glyoxylate cycle. Many plants and microorganisms are relying on glyoxylate cycle enzymes to survive upon downregulation of tricarboxylic acid cycle (TCA cycle), especially Mycobacterium tuberculosis (MTB). In fact, ICL is a potential drug target for MTB in dormancy. With the urge for new antitubercular drug to overcome tuberculosis treat such as multidrug resistant strain and HIV-coinfection, the pace of drug discovery has to be increased. There are many approaches to discovering potential inhibitor for MTB ICL and we hereby review the updated list of them. The potential inhibitors can be either a natural compound or synthetic compound. Moreover, these compounds are not necessary to be discovered only from MTB ICL, as it can also be discovered by a non-MTB ICL. Our review is categorized into four sections, namely, (a) MTB ICL with natural compounds; (b) MTB ICL with synthetic compounds; (c) non-MTB ICL with natural compounds; and (d) non-MTB ICL with synthetic compounds. Each of the approaches is capable of overcoming different challenges of inhibitor discovery. We hope that this paper will benefit the discovery of better inhibitor for ICL.
  12. Khijmatgar S, Belur G, Venkataram R, Karobari MI, Marya A, Shetty V, et al.
    Biomed Res Int, 2021;2021:5548746.
    PMID: 34545329 DOI: 10.1155/2021/5548746
    Objective: The objective of this study was to determine the candidal load of the patients with Chronic Obstructive Pulmonary Disease (COPD) and evaluate the oral health status of subjects with COPD. Material and Methods. N = 112 COPD subjects and N = 100 control subjects were included in the study. The selection of COPD cases was confirmed based on the set criteria from the American College of Physicians. The oral health status was assessed as per WHO criteria to determine the score of decayed, missing, and filled teeth (DMFT), significant caries index (SiC), community periodontal index and treatment needs (CPITN), and oral hygiene index-simplified (OHI-S). Gram staining was performed to identify Candida using the whole saliva. Quantitative evaluation of the candidal load was carried out using Sabouraud Dextrose Agar (SDA). Chrome agar was used to differentiate between the commensal carriages. A statistical analysis paired t-test and 95% confidence interval (CI) for proportions was carried out using STATA software.

    Results: Candidal growth was found in 21.42% (n = 24) of COPD cases and 1.1% (n = 11) of control cases (p < 0.05) (95% CI 0.45, 0.59). The DMFT score was 8.26 in COPD subjects and 4.6 in controls, the SiC score was 16.42 in COPD subjects and 10.25 in controls, and the CPITN score for both COPD and control cases was score 2.

    Conclusion: In conclusion, there was a higher candidal load among subjects suffering from COPD. Theophylline medication can be a risk factor for increased candidal load in COPD patients.

  13. Tung CH, Chen CW, Guo RC, Ng HF, Chu YW
    Biomed Res Int, 2016;2016:9480276.
    PMID: 27610389 DOI: 10.1155/2016/9480276
    Background. Quaternary structures of proteins are closely relevant to gene regulation, signal transduction, and many other biological functions of proteins. In the current study, a new method based on protein-conserved motif composition in block format for feature extraction is proposed, which is termed block composition. Results. The protein quaternary assembly states prediction system which combines blocks with functional domain composition, called QuaBingo, is constructed by three layers of classifiers that can categorize quaternary structural attributes of monomer, homooligomer, and heterooligomer. The building of the first layer classifier uses support vector machines (SVM) based on blocks and functional domains of proteins, and the second layer SVM was utilized to process the outputs of the first layer. Finally, the result is determined by the Random Forest of the third layer. We compared the effectiveness of the combination of block composition, functional domain composition, and pseudoamino acid composition of the model. In the 11 kinds of functional protein families, QuaBingo is 23% of Matthews Correlation Coefficient (MCC) higher than the existing prediction system. The results also revealed the biological characterization of the top five block compositions. Conclusions. QuaBingo provides better predictive ability for predicting the quaternary structural attributes of proteins.
  14. Rawi NA, Jalaludin J, Chua PC
    Biomed Res Int, 2015;2015:248178.
    PMID: 25984527 DOI: 10.1155/2015/248178
    Indoor air quality (IAQ) has been the object of several studies due to its adverse health effects on children. Methods. A cross-sectional comparative study was carried out among Malay children in Balakong (2 studied preschools) and Bangi (2 comparative preschools), Selangor, with the aims of determining IAQ and its association with respiratory health. 61 and 50 children aged 5-6 years were selected as studied and comparative groups. A questionnaire was used to obtain an exposure history and respiratory symptoms. Lung function test was carried out. IAQ parameters obtained include indoor concentration of particulate matter (PM), volatile organic compounds (VOCs), carbon monoxide (CO), carbon dioxide (CO2), temperature, air velocity (AV), and relative humidity. Results. There was a significant difference between IAQ in studied and comparative preschools for all parameters measured (P < 0.001) except for CO2 and AV. Studied preschools had higher PM and CO concentration. FVC, FEV1, FVC% and FEV1% predicted values were significantly lower among studied group. Exposures to PM, VOCs, and CO were associated with wheezing. Conclusion. The finding concluded that exposures to poor IAQ might increase the risk of getting lung function abnormality and respiratory problems among study respondents.
  15. Ab Halim AAB, Rafii MY, Osman MB, Oladosu Y, Chukwu SC
    Biomed Res Int, 2021;2021:8350136.
    PMID: 34095311 DOI: 10.1155/2021/8350136
    High kernel elongation (HKE) is one of the high-quality characteristics in rice. The objectives of this study were to determine the effects of ageing treatments, gene actions, and inheritance pattern of kernel elongation on cooking quality in two populations of rice and determine the path of influence and contribution of other traits to kernel elongation in rice. Two rice populations derived from crosses between MR219 × Mahsuri Mutan and MR219 × Basmati 370 were used. The breeding materials included two F1 progenies from the two populations, and their respective parents were grown in four different batches at a week interval to synchronize the flowering between the female and male plants. Scaling tests and generation means analysis were carried out to determine ageing effects and estimate additive-dominance gene action and epistasis. The estimation of gene interaction was based on quantitative traits. Path coefficient analysis was done using SAS software version 9.4 to determine the path of influence (direct or indirect) of six quantitative traits on HKE. Results obtained showed that nonallelic gene interaction was observed in all traits. The results before ageing and after ageing showed significant differences in all traits, while the gene interaction changed after ageing. The HKE value improved after ageing, suggesting that ageing is an external factor that could influence gene expression. The epistasis effect for HKE obtained from the cross Mahsuri Mutan × MR219 showed duplicate epistasis while that obtained from a cross between Basmati 370 × MR219 showed complimentary epistasis. Besides, the heritability of HKE was higher in Basmati 370 × MR219 compared to that obtained in Mahsuri Mutan × MR219. The path analysis showed that the cooked grain length and length-width ratio positively significantly affected HKE. It was concluded that ageing treatment is an external factor that could improve the expression of HKE. The findings from this study would be useful to breeders in the selection and development of new specialty (HKE) rice varieties.
  16. Anbu P, Gopinath SC, Chaulagain BP, Tang TH, Citartan M
    Biomed Res Int, 2015;2015:816419.
    PMID: 26161416 DOI: 10.1155/2015/816419
  17. Cinosi E, Martinotti G, Simonato P, Singh D, Demetrovics Z, Roman-Urrestarazu A, et al.
    Biomed Res Int, 2015;2015:968786.
    PMID: 26640804 DOI: 10.1155/2015/968786
    The use of substances to enhance human abilities is a constant and cross-cultural feature in the evolution of humanity. Although much has changed over time, the availability on the Internet, often supported by misleading marketing strategies, has made their use even more likely and risky. This paper will explore the case of Mitragyna speciosa Korth. (kratom), a tropical tree used traditionally to combat fatigue and improve work productivity among farm populations in Southeast Asia, which has recently become popular as novel psychoactive substance in Western countries. Specifically, it (i) reviews the state of the art on kratom pharmacology and identification; (ii) provides a comprehensive overview of kratom use cross-culturally; (iii) explores the subjective experiences of users; (iv) identifies potential risks and side-effects related to its consumption. Finally, it concludes that the use of kratom is not negligible, especially for self-medication, and more clinical, pharmacological, and socioanthropological studies as well as a better international collaboration are needed to tackle this marginally explored phenomenon.
  18. Choon YW, Mohamad MS, Deris S, Chong CK, Omatu S, Corchado JM
    Biomed Res Int, 2015;2015:124537.
    PMID: 25874200 DOI: 10.1155/2015/124537
    Microbial strain optimisation for the overproduction of a desired phenotype has been a popular topic in recent years. Gene knockout is a genetic engineering technique that can modify the metabolism of microbial cells to obtain desirable phenotypes. Optimisation algorithms have been developed to identify the effects of gene knockout. However, the complexities of metabolic networks have made the process of identifying the effects of genetic modification on desirable phenotypes challenging. Furthermore, a vast number of reactions in cellular metabolism often lead to a combinatorial problem in obtaining optimal gene knockout. The computational time increases exponentially as the size of the problem increases. This work reports an extension of Bees Hill Flux Balance Analysis (BHFBA) to identify optimal gene knockouts to maximise the production yield of desired phenotypes while sustaining the growth rate. This proposed method functions by integrating OptKnock into BHFBA for validating the results automatically. The results show that the extension of BHFBA is suitable, reliable, and applicable in predicting gene knockout. Through several experiments conducted on Escherichia coli, Bacillus subtilis, and Clostridium thermocellum as model organisms, extension of BHFBA has shown better performance in terms of computational time, stability, growth rate, and production yield of desired phenotypes.
  19. Malon RS, Sadir S, Balakrishnan M, Córcoles EP
    Biomed Res Int, 2014;2014:962903.
    PMID: 25276835 DOI: 10.1155/2014/962903
    Saliva is increasingly recognised as an attractive diagnostic fluid. The presence of various disease signalling salivary biomarkers that accurately reflect normal and disease states in humans and the sampling benefits compared to blood sampling are some of the reasons for this recognition. This explains the burgeoning research field in assay developments and technological advancements for the detection of various salivary biomarkers to improve clinical diagnosis, management, and treatment. This paper reviews the significance of salivary biomarkers for clinical diagnosis and therapeutic applications, with focus on the technologies and biosensing platforms that have been reported for screening these biomarkers.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links