OBJECTIVES: To assess the effects of colesevelam for type 2 diabetes mellitus.
SEARCH METHODS: Several electronic databases were searched, among these The Cochrane Library (Issue 1, 2012), MEDLINE, EMBASE, CINAHL, LILACS, OpenGrey and Proquest Dissertations and Theses database (all up to January 2012), combined with handsearches. No language restriction was used.
SELECTION CRITERIA: We included randomised controlled trials (RCTs) that compared colesevelam with or without other oral hypoglycaemic agents with a placebo or a control intervention with or without oral hypoglycaemic agents.
DATA COLLECTION AND ANALYSIS: Two review authors independently selected the trials and extracted the data. We evaluated risk of bias of trials using the parameters of randomisation, allocation concealment, blinding, completeness of outcome data, selective reporting and other potential sources of bias.
MAIN RESULTS: Six RCTs ranging from 8 to 26 weeks investigating 1450 participants met the inclusion criteria. Overall, the risk of bias of these trials was unclear or high. All RCTs compared the effects of colesevelam with or without other antidiabetic drug treatments with placebo only (one study) or combined with antidiabetic drug treatments. Colesevelam with add-on antidiabetic agents demonstrated a statistically significant reduction in fasting blood glucose with a mean difference (MD) of -15 mg/dL (95% confidence interval (CI) -22 to - 8), P < 0.0001; 1075 participants, 4 trials, no trial with low risk of bias in all domains. There was also a reduction in glycosylated haemoglobin A1c (HbA1c) in favour of colesevelam (MD -0.5% (95% CI -0.6 to -0.4), P < 0.00001; 1315 participants, 5 trials, no trial with low risk of bias in all domains. However, the single trial comparing colesevelam to placebo only (33 participants) did not reveal a statistically significant difference between the two arms - in fact, in both arms HbA1c increased. Colesevelam with add-on antidiabetic agents demonstrated a statistical significant reduction in low-density lipoprotein (LDL)-cholesterol with a MD of -13 mg/dL (95% CI -17 to - 9), P < 0.00001; 886 participants, 4 trials, no trial with low risk of bias in all domains. Non-severe hypoglycaemic episodes were infrequently observed. No other serious adverse effects were reported. There was no documentation of complications of the disease, morbidity, mortality, health-related quality of life and costs.
AUTHORS' CONCLUSIONS: Colesevelam added on to antidiabetic agents showed significant effects on glycaemic control. However, there is a limited number of studies with the different colesevelam/antidiabetic agent combinations. More information on the benefit-risk ratio of colesevelam treatment is necessary to assess the long-term effects, particularly in the management of cardiovascular risks as well as the reduction in micro- and macrovascular complications of type 2 diabetes mellitus. Furthermore, long-term data on health-related quality of life and all-cause mortality also need to be investigated.
METHODS: Muslim people with T1DM were surveyed in 13 countries between June and August 2020, shortly after the end of Ramadan (23rd April-23rd May 2020) using a simple questionnaire.
RESULTS: 71.1% of muslims with T1DM fasted during Ramadan. Concerns about COVID-19 were higher in individuals ≥18 years (p = 0.002). The number of participants who decided not to fast plus those who received Ramadan-focused education were significantly higher in the ≥18-year group (p
RESULTS: We found that cumulative food intake was not changed in the group with 12 h daily fasting, but significantly decreased in the 16 and 20 h fasting groups. The composition of gut microbiota was altered by all these types of intermittent fasting. At genus level, 16 h fasting led to increased level of Akkermansia and decreased level of Alistipes, but these effects disappeared after the cessation of fasting. No taxonomic differences were identified in the other two groups.
CONCLUSIONS: These data indicated that intermittent fasting shapes gut microbiota in healthy mice, and the length of daily fasting interval may influence the outcome of intermittent fasting.
METHODS: A cross-sectional observational study was designed. Forty normotensive (median age 47 +/- 6 yrs.) and twenty untreated hypertensive Malay men (median age 50 +/- 7 yrs.) without clinical evidence of cardiovascular complications were selected. Pulse wave velocity measured using the automated Complior machine was used as an index of arterial stiffness. Other measurements obtained were blood pressure, body mass index, fasting insulin, cholesterol, HDL-cholesterol, LDL-cholesterol, triglycerides, glucose and creatinine level.
RESULTS: The blood pressure and pulse wave velocity (PWV) were significantly higher in the hypertensives compared to the normotensives (blood pressure 169/100 mm Hg +/- 14/7 vs. 120/80 mm Hg +/- 10/4, p < 0.001; PWV 11.69 m/s +/- 1.12 vs. 8.83 m/s +/- 1.35, p < 0.001). Other variables such as body mass index, fasting insulin, cholesterol, HDL-cholesterol, LDL-cholesterol, triglycerides and haematocrit were comparable among the two groups. Within each group, there was a significant positive correlation between pulse wave velocity and systolic blood pressure (r = 0.76, p < 0.001 in normotensives; r = 0.73, p < 0.001 in hypertensives) and mean arterial pressure (r = 0.74, p < 0.001 in normotensives; r = 0.73, p < 0.001 in hypertensives). No correlation was noted between pulse wave velocity and diastolic blood pressure, age, body mass index, fasting insulin level, cholesterol, HDL-cholesterol, LDL-cholesterol or triglyceride levels.
CONCLUSION: Arterial stiffness as determined by PWV is increased in newly diagnosed untreated hypertensive subjects even before clinically evident cardiovascular disease. However, arterial stiffness is not correlated with the fasting insulin level in normotensives and newly diagnosed hypertensives.
Objective: To grade the evidence from published meta-analyses of RCTs that assessed the associations of IF (zero-calorie alternate-day fasting, modified alternate-day fasting, the 5:2 diet, and time-restricted eating) with obesity-related health outcomes.
Evidence Review: PubMed, Embase, and Cochrane database of systematic reviews were searched from database inception to January 12, 2021. Data analysis was conducted from April 2021 through July 2021. Meta-analyses of RCTs investigating effects of IF in adults were included. The effect sizes of IF were recalculated using a random-effects model. We assessed the quality of evidence per association by applying the GRADE criteria (Grading of Recommendations, Assessment, Development, and Evaluations) as high, moderate, low, and very low.
Findings: A total of 11 meta-analyses comprising 130 RCTs (median [IQR] sample size, 38 [24-69] participants; median [IQR] follow-up period, 3 [2-5] months) were included describing 104 unique associations of different types of IF with obesity-related health outcomes (median [IQR] studies per association, 4 [3-5]). There were 28 statistically significant associations (27%) that demonstrated the beneficial outcomes for body mass index, body weight, fat mass, low-density lipoprotein cholesterol, total cholesterol, triglycerides, fasting plasma glucose, fasting insulin, homeostatic model assessment of insulin resistance, and blood pressure. IF was found to be associated with reduced fat-free mass. One significant association (1%) supported by high-quality evidence was modified alternate-day fasting for 1 to 2 months, which was associated with moderate reduction in body mass index in healthy adults and adults with overweight, obesity, or nonalcoholic fatty liver disease compared with regular diet. Six associations (6%) were supported by moderate quality evidence. The remaining associations found to be significant were supported by very low (75 associations [72%]) to low (22 associations [21%]) quality evidence.
Conclusions and Relevance: In this umbrella review, we found beneficial associations of IF with anthropometric and cardiometabolic outcomes supported by moderate to high quality of evidence, which supports the role of IF, especially modified alternate-day fasting, as a weight loss approach for adults with overweight or obesity. More clinical trials with long-term follow-up are needed to investigate the effects of IF on clinical outcomes such as cardiovascular events and mortality.
SUBJECTS: A total of 32 healthy males (Mean±SD), aged 59.7±6.3 years, with a BMI of 26.7±2.2 kg/m2 were recruited to the study.
METHOD: Participants were randomized to either the FCR group (and were instructed to follow a calorie restricted dietary regime with intermittent fasting) or to the control group (in which individuals were asked to maintain their current lifestyle), for a 3 month period. Mood was assessed using the Profile of Mood States and depression was assessed using Beck Depression Inventory-II and Geriatric Depression Scale-15 at baseline, week 6 and week 12 of the intervention.
RESULTS: A total of 31 subjects completed the study (n=16, FCR and n=15, control). Significant decreases in tension, anger, confusion and total mood disturbance and improvements in vigor were observed in participants in the FCR group compared to the control group (p<0.05). No significant changes in mean depression scores were observed. Weight, BMI and percent body fat were reduced by 3.8%, 3.7% and 5.7% respectively in the FCR group.
CONCLUSIONS: Our findings show that a FCR dietary regime is effective in improving mood states and nutritional status among ageing men.
METHOD: This is a single-center, single-dose, open-label, randomized, 2-treatment, 2-sequence and 2-period crossover study with a washout period of 7 days. Paracetamol/Orphenadrine tablets were administered after a 10-h fast. Blood samples for pharmacokinetic analysis were collected at scheduled time intervals prior to and up to 72 h after dosing. Blood samples were centrifuged, and separated plasma were kept frozen (- 15 °C to - 25 °C) until analysis. Plasma concentrations of orphenadrine and paracetamol were quantified using liquid-chromatography-tandem mass spectrometer using diphenhydramine as internal standard. The pharmacokinetic parameters AUC0-∞, AUC0-t and Cmax were determined using plasma concentration time profile for both preparations. Bioequivalence was assessed according to the ASEAN guideline acceptance criteria for bioequivalence which is the 90% confidence intervals of AUC0-∞, AUC0-t and Cmax ratio must be within the range of 80.00-125.00%.
RESULTS: There were 28 healthy subjects enrolled, and 27 subjects completed this trial. There were no significant differences observed between the AUC0-∞, AUC0-t and Cmax of both test and reference preparations in fasted condition. The 90% confidence intervals for the ratio of AUC0-t (100.92-111.27%), AUC0-∞ (96.94-108.08%) and Cmax (100.11-112.50%) for orphenadrine (n = 25); and AUC0-t (94.29-101.83%), AUC0-∞ (94.77-101.68%) and Cmax (87.12-101.20%) for paracetamol (n = 27) for test preparation over reference preparation were all within acceptable bioequivalence range of 80.00-125.00%.
CONCLUSION: The test preparation is bioequivalent to the reference preparation and can be used interchangeably.
TRIAL REGISTRATION: NMRR- 17-1266-36,001; registered and approved on 12 September 2017.
METHODS: We assessed sCD26/DPP-IV levels, active GLP-1 levels, body mass index (BMI), glucose, insulin, A1c, glucose homeostasis indices, and lipid profiles in 549 Malaysian subjects (including 257 T2DM patients with MetS, 57 T2DM patients without MetS, 71 non-diabetics with MetS, and 164 control subjects without diabetes or metabolic syndrome).
RESULTS: Fasting serum levels of sCD26/DPP-IV were significantly higher in T2DM patients with and without MetS than in normal subjects. Likewise, sCD26/DPP-IV levels were significantly higher in patients with T2DM and MetS than in non-diabetic patients with MetS. However, active GLP-1 levels were significantly lower in T2DM patients both with and without MetS than in normal subjects. In T2DM subjects, sCD26/DPP-IV levels were associated with significantly higher A1c levels, but were significantly lower in patients using monotherapy with metformin. In addition, no significant differences in sCD26/DPP-IV levels were found between diabetic subjects with and without MetS. Furthermore, sCD26/DPP-IV levels were negatively correlated with active GLP-1 levels in T2DM patients both with and without MetS. In normal subjects, sCD26/DPP-IV levels were associated with increased BMI, cholesterol, and LDL-cholesterol (LDL-c) levels.
CONCLUSION: Serum sCD26/DPP-IV levels increased in T2DM subjects with and without MetS. Active GLP-1 levels decreased in T2DM patients both with and without MetS. In addition, sCD26/DPP-IV levels were associated with Alc levels and negatively correlated with active GLP-1 levels. Moreover, metformin monotherapy was associated with reduced sCD26/DPP-IV levels. In normal subjects, sCD26/DPP-IV levels were associated with increased BMI, cholesterol, and LDL-c.