Displaying publications 101 - 110 of 110 in total

Abstract:
Sort:
  1. Kalra J, Kumar P, Majeed AB, Prakash A
    Pharmacol. Biochem. Behav., 2016 Jul-Aug;146-147:1-12.
    PMID: 27106205 DOI: 10.1016/j.pbb.2016.04.002
    Several lines of evidence indicate that beta amyloid (β-A) production, neurofibrillary tangles and neuroinflammation are interrelated in the pathogenesis of Alzheimer's disease (AD). AD is associated with enhanced β-A production and accumulation resulting in neuroinflammation probably via activation of lipoxygenase (LOX) and cyclooxygenase (COX) pathways. Therefore, the present study was designed to investigate the role of LOX and COX inhibitors (zafirlukast and valdecoxib) in amyloidogenesis in β-A1-42 oligomer induced experimental AD in rats. The behavioral activities were assessed using actophotometer, novel object recognition test (ORT), Morris water maze (MWM) followed by biochemical assessments, determination of proinflammatory cytokines and mediators (TNF-α, IL-1β and PGE2), β-A1-42 levels and histopathological analysis. ICV administration of β-A1-42 oligomer produced significant impairment in memory consolidation. In addition to this significant increase in mito-oxidative stress, neuroinflammatory markers, acetylcholinesterase (AChE) toxicity, β-A1-42 level, neuronal cell death and neuroinflammation are more profound in β-A1-42 oligomer treated AD rats. Administration of zafirlukast (15 and 30mg/kg), and valdecoxib (5 and 10mg/kg) significantly improved the behavioral performances and showed significant reversal of mito-oxidative damage declining the neuroinflammation in β-A1-42 oligomer treated rats. Furthermore, more profound effects were observed at the sub-therapeutic dose combination of zafirlukast (15mg/kg) and valdecoxib (5mg/kg). The results of the present study indicate that protective effects of zafirlukast and valdecoxib are achieved through the blockade of release of LOX and COX metabolites therefore, representing a new therapeutic target for treating AD and other neurodegenerative disorders.
    Matched MeSH terms: Amyloid beta-Peptides/metabolism
  2. Rosini M, Simoni E, Caporaso R, Basagni F, Catanzaro M, Abu IF, et al.
    Eur J Med Chem, 2019 Oct 15;180:111-120.
    PMID: 31301562 DOI: 10.1016/j.ejmech.2019.07.011
    N-methyl-d-aspartate receptors (NMDAR) are critically involved in the pathogenesis of Alzheimer's disease (AD). Acting as an open-channel blocker, the anti-AD drug memantine preferentially targets NMDAR overactivation, which has been proposed to trigger neurotoxic events mediated by amyloid β peptide (Aβ) and oxidative stress. In this study, we applied a multifunctional approach by conjugating memantine to ferulic acid, which is known to protect the brain from Aβ neurotoxicity and neuronal death caused by ROS. The most interesting compound (7) behaved, like memantine, as a voltage-dependent antagonist of NMDAR (IC50 = 6.9 μM). In addition, at 10 μM concentration, 7 exerted antioxidant properties both directly and indirectly through the activation of the Nrf-2 pathway in SH-SY5Y cells. At the same concentration, differently from the parent compounds memantine and ferulic acid alone, it was able to modulate Aβ production, as revealed by the observed increase of the non-amyloidogenic sAPPα in H4-SW cells. These findings suggest that compound 7 may represent a promising tool for investigating NMDAR-mediated neurotoxic events involving Aβ burden and oxidative damage.
    Matched MeSH terms: Amyloid beta-Peptides/metabolism
  3. Li Y, Tian Q, Li Z, Dang M, Lin Y, Hou X
    Drug Dev Res, 2019 09;80(6):837-845.
    PMID: 31301179 DOI: 10.1002/ddr.21567
    The objective of this study was to evaluate the neuroprotective effect of sitagliptin (Sita), quercetin (QCR) and its combination in β-amyloid (Aβ) induced Alzheimer's disease (AD). Male Sprague-Dawley rats, weighing between 220 and 280 g were used for experiment. Rats were divided into 5 groups (n = 10) and the groups were as follows: (a) Sham control; (b) Aβ injected; (c) Aβ injected + Sita 100; (d) Aβ injected + QCR 100; and (e) Aβ injected + Sita 100 + QCR 100. Cognitive performance was observed by the Morris water maze (MWM), biochemical markers, for example, MDA, SOD, CAT, GSH, Aβ1-42 level, Nrf2/HO-1 expression and histopathological study of rat brain were estimated. Pretreatment with Sita, QCR and their combination showed a significant increase in escape latency in particular MWM cognitive model. Further co-administration of sita and QCR significantly reduced Aβ1-42 level when compared with individual treatment. Biochemical markers, for example, increased SOD, CAT and GSH, decreased MDA were seen, and histopathological studies revealed the reversal of neuronal damage in the treatment group. Additionally, Nrf2/HO-1 pathway in rat's brain was significantly increased by Sita, QCR and their combination. Pretreatment with QCR potentiates the action of Sita in Aβ induced AD in rats. The improved cognitive memory could be because of the synergistic effect of the drugs by decreasing Aβ1-42 level, antioxidant activity and increased expression of Nrf2/HO-1 in rat brain.
    Matched MeSH terms: Amyloid beta-Peptides/metabolism
  4. Jayasingh Chellammal HS, Veerachamy A, Ramachandran D, Gummadi SB, Manan MM, Yellu NR
    Biomed Pharmacother, 2019 Jan;109:1454-1461.
    PMID: 30551397 DOI: 10.1016/j.biopha.2018.10.189
    The progressive accumulation of amyloid beta (Aβ) peptide is neurotoxic and leads to Alzheimer's type dementia. Accumulation of Aβ has been associated with dysfunction of hypothalamic-pituitary-adrenal (HPA) axis and elevated pro-inflammatory cytokines. In this study, we investigated the effect of 1`δ-1`-acetoxyeugenol acetate (DAEA), isolated from Alpinia galanga (L.), on Aβ(25-35) induced neurodegeneration in mice. Mice were treated with three different doses of DAEA (12.5 mg/kg, 25 mg/kg and 50 mg/kg) for 28 days. Aβ(25-35) was injected by intracerebroventricular (i.c.v.) injection on the 15th day of 28 days. Open field, water maze and step-down inhibitory tests were performed on the 27th day to determine the habituation memory, spatial learning, and short- and long-term memory, respectively. Acetylcholinesterase (AChE), Corticosterone, biogenic amines (serotonin and dopamine), tumour necrosis factor-α (TNF-α), and antioxidant parameters such as superoxide dismutase, catalase, glutathione peroxidase and vitamin C were evaluated in brain homogenates after behavioural tests to ascertain the cognitive improvement through neuro-immune-endocrine modulation. The DAEA treatment with 25 mg/kg and 50 mg/kg resulted in significant (p < 0.001) improvement of habituation memory and step-down inhibitory avoidance task. In spatial learning, the cognitive improvement was significantly improved (p < 0.001) by reduction in escape latency. In the biochemical study, the significant (p < 0.001) reduction of AChE indicates the preeminent neuroprotection. Corticosterone and TNF-α were significantly (p < 0.01) reduced and biogenic amines were increased with antioxidant markers, which signify the potential influence of DAEA on neuroprotection. Our investigation revealed that the drug DAEA attenuates stress mediated through the HPA axis and regulates the neuroendocrine and neuroimmune function to improve the cognition. DAEA could be a potential lead candidate for the treatment of neurodegeneration.
    Matched MeSH terms: Amyloid beta-Peptides/metabolism*
  5. Ibrahim NF, Yanagisawa D, Durani LW, Hamezah HS, Damanhuri HA, Wan Ngah WZ, et al.
    J Alzheimers Dis, 2017;55(2):597-612.
    PMID: 27716672
    Alzheimer's disease (AD) is the most common cause of dementia. The cardinal neuropathological characteristic of AD is the accumulation of amyloid-β (Aβ) into extracellular plaques that ultimately disrupt neuronal function and lead to neurodegeneration. One possible therapeutic strategy therefore is to prevent Aβ aggregation. Previous studies have suggested that vitamin E analogs slow AD progression in humans. In the present study, we investigated the effects of the tocotrienol-rich fraction (TRF), a mixture of vitamin E analogs from palm oil, on amyloid pathology in vitro and in vivo. TRF treatment dose-dependently inhibited the formation of Aβ fibrils and Aβ oligomers in vitro. Moreover, daily TRF supplementation to AβPPswe/PS1dE9 double transgenic mice for 10 months attenuated Aβ immunoreactive depositions and thioflavin-S-positive fibrillar type plaques in the brain, and eventually improved cognitive function in the novel object recognition test compared with control AβPPswe/PS1dE9 mice. The present result indicates that TRF reduced amyloid pathology and improved cognitive functions, and suggests that TRF is a potential therapeutic agent for AD.
    Matched MeSH terms: Amyloid beta-Peptides/metabolism
  6. Xu Z, Nan W, Zhang X, Sun Y, Yang J, Lu K, et al.
    J Mol Neurosci, 2018 Jun;65(2):222-233.
    PMID: 29845511 DOI: 10.1007/s12031-018-1075-5
    Mesenchymal stem cell (MSC) therapy is a promising prospect for the treatment of Alzheimer's disease (AD); however, the underlying mechanisms by which MSCs mediate positive effects are still unclear. We speculated that MSCs mediate microglial autophagy and enhance the clearance of Aβ. To test this hypothesis, we cultured BV2 microglial cells with umbilical cord mesenchymal stem cells conditioned medium (ucMSCs-CM) in the presence or absence of Aβ25-35 oligomers. We investigated BV2 cell proliferation, cell death, and Aβ25-35 phagocytosis as well as protein expression levels of LC3, Beclin-1, p62, insulin-degrading enzyme (IDE), and neprilysin (Nep) with western blotting. The results showed that ucMSCs-CM inhibited the proliferation and decreased cell death of BV2 cells induced by Aβ25-35. ucMSCs-CM also promoted the phagocytosis of Aβ25-35 by BV2 cells and changed the expression of autophagy-related proteins LC3, Beclin-1, and p62. Treatment also upregulated the expression of Aβ-degrading enzymes IDE and Nep. Furthermore, the culture medium in BV2 cells with Aβ25-35 and ucMSCs-CM prevented neuronal cell SH-SY5Y from cell death compared to control medium without ucMSCs-CM. Altogether, these data suggested that ucMSCs-CM protect microglial and neuronal cells from Aβ25-35-induced cell death and promote Aβ phagocytosis by modulating autophagy and enhancing the expression of Aβ-degrading enzymes in microglia.
    Matched MeSH terms: Amyloid beta-Peptides/metabolism*
  7. Chin KY, Tay SS
    Nutrients, 2018 Jul 09;10(7).
    PMID: 29987193 DOI: 10.3390/nu10070881
    Alzheimer’s disease (AD) is plaguing the aging population worldwide due to its tremendous health care and socioeconomic burden. Current treatment of AD only offers symptomatic relief to patients. Development of agents targeting specific pathologies of AD is very slow. Tocotrienol, a member of the vitamin E family, can tackle many aspects of AD, such as oxidative stress, mitochondrial dysfunction and abnormal cholesterol synthesis. This review summarizes the current evidence on the role of tocotrienol as a neuroprotective agent. Preclinical studies showed that tocotrienol could reduce oxidative stress by acting as a free-radical scavenger and promoter of mitochondrial function and cellular repair. It also prevented glutamate-induced neurotoxicity in the cells. Human epidemiological studies showed a significant inverse relationship between tocotrienol levels and the occurrence of AD. However, there is no clinical trial to support the claim that tocotrienol can delay or prevent the onset of AD. As a conclusion, tocotrienol has the potential to be developed as an AD-preventing agent but further studies are required to validate its efficacy in humans.
    Matched MeSH terms: Amyloid beta-Peptides/metabolism
  8. Alawieyah Syed Mortadza S, Sim JA, Neubrand VE, Jiang LH
    Glia, 2018 03;66(3):562-575.
    PMID: 29143372 DOI: 10.1002/glia.23265
    Amyloid β (Aβ)-induced neuroinflammation plays an important part in Alzheimer's disease (AD). Emerging evidence supports a role for the transient receptor potential melastatin-related 2 (TRPM2) channel in Aβ-induced neuroinflammation, but how Aβ induces TRPM2 channel activation and this relates to neuroinflammation remained poorly understood. We investigated the mechanisms by which Aβ42 activates the TRPM2 channel in microglial cells and the relationships to microglial activation and generation of tumor necrosis factor-α (TNF-α), a key cytokine implicated in AD. Exposure to 10-300 nM Aβ42 induced concentration-dependent microglial activation and generation of TNF-α that were ablated by genetically deleting (TRPM2 knockout ;TRPM2-KO) or pharmacologically inhibiting the TRPM2 channel, revealing a critical role of this channel in Aβ42 -induced microglial activation and generation of TNF-α. Mechanistically, Aβ42 activated the TRPM2 channel via stimulating generation of reactive oxygen species (ROS) and activation of poly(ADPR) polymerase-1 (PARP-1). Aβ42 -induced generation of ROS and activation of PARP-1 and TRPM2 channel were suppressed by inhibiting protein kinase C (PKC) and NADPH oxidases (NOX). Aβ42 -induced activation of PARP-1 and TRPM2 channel was also reduced by inhibiting PYK2 and MEK/ERK. Aβ42 -induced activation of PARP-1 was attenuated by TRPM2-KO and moreover, the remaining PARP-1 activity was eliminated by inhibiting PKC and NOX, but not PYK2 and MEK/ERK. Collectively, our results suggest that PKC/NOX-mediated generation of ROS and subsequent activation of PARP-1 play a role in Aβ42 -induced TRPM2 channel activation and TRPM2-dependent activation of the PYK2/MEK/ERK signalling pathway acts as a positive feedback to further facilitate activation of PARP-1 and TRPM2 channel. These findings provide novel insights into the mechanisms underlying Aβ-induced AD-related neuroinflammation.
    Matched MeSH terms: Amyloid beta-Peptides/metabolism*
  9. Rothan HA, Mohamed Z, Suhaeb AM, Rahman NA, Yusof R
    OMICS, 2013 Nov;17(11):560-7.
    PMID: 24044366 DOI: 10.1089/omi.2013.0056
    Dengue virus infects millions of people worldwide, and there is no vaccine or anti-dengue therapeutic available. Antimicrobial peptides have been shown to possess effective antiviral activity against various viruses. One of the main limitations of developing these peptides as potent antiviral drugs is the high cost of production. In this study, high yield production of biologically active plectasin peptide was inexpensively achieved by producing tandem plectasin peptides as inclusion bodies in E. coli. Antiviral activity of the recombinant peptide towards dengue serotype-2 NS2B-NS3 protease (DENV2 NS2B-NS3pro) was assessed as a target to inhibit dengue virus replication in Vero cells. Single units of recombinant plectasin were collected after applying consecutive steps of refolding, cleaving by Factor Xa, and nickel column purification to obtain recombinant proteins of high purity. The maximal nontoxic dose (MNTD) of the recombinant peptide against Vero cells was 20 μM (100 μg/mL). The reaction velocity of DENV2 NS2B-NS3pro decreased significantly after increasing concentrations of recombinant plectasin were applied to the reaction mixture. Plectasin peptide noncompetitively inhibited DENV2 NS2B-NS3pro at Ki value of 5.03 ± 0.98 μM. The percentage of viral inhibition was more than 80% at the MNTD value of plectasin. In this study, biologically active recombinant plectasin which was able to inhibit dengue protease and viral replication in Vero cells was successfully produced in E. coli in a time- and cost- effective method. These findings are potentially important in the development of potent therapeutics against dengue infection.
    Matched MeSH terms: Peptides/metabolism
  10. Ha ZY, Mathew S, Yeong KY
    Curr Protein Pept Sci, 2020;21(1):99-109.
    PMID: 31702488 DOI: 10.2174/1389203720666191107094949
    Butyrylcholinesterase is a serine hydrolase that catalyzes the hydrolysis of esters in the body. Unlike its sister enzyme acetylcholinesterase, butyrylcholinesterase has a broad substrate scope and lower acetylcholine catalytic efficiency. The difference in tissue distribution and inhibitor sensitivity also points to its involvement external to cholinergic neurotransmission. Initial studies on butyrylcholinesterase showed that the inhibition of the enzyme led to the increment of brain acetylcholine levels. Further gene knockout studies suggested its involvement in the regulation of amyloid-beta, a brain pathogenic protein. Thus, it is an interesting target for neurological disorders such as Alzheimer's disease. The substrate scope of butyrylcholinesterase was recently found to include cocaine, as well as ghrelin, the "hunger hormone". These findings led to the development of recombinant butyrylcholinesterase mutants and viral gene therapy to combat cocaine addiction, along with in-depth studies on the significance of butyrylcholinesterase in obesity. It is observed that the pharmacological impact of butyrylcholinesterase increased in tandem with each reported finding. Not only is the enzyme now considered an important pharmacological target, it is also becoming an important tool to study the biological pathways in various diseases. Here, we review and summarize the biochemical properties of butyrylcholinesterase and its roles, as a cholinergic neurotransmitter, in various diseases, particularly neurodegenerative disorders.
    Matched MeSH terms: Amyloid beta-Peptides/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links