METHODS: A structured questionnaire was used to collect data on a child's current and previous illnesses, oral health behaviours, dietary habits, parental smoking behaviours and parents' dental history. The intraoral examination recorded dental caries (dmfs), enamel defects, gingival health, melanin pigmentation and soft tissue health. Stimulated saliva was collected. Total sIgA levels were quantified using indirect competitive ELISA with a SalimetricsTM kit.
RESULTS: The 44 children (aged 15-69 months) recruited were divided into two groups: ETS and non-ETS (control). There were 22 children in each: 16 who were exposed to ETS during and after gestation were identified as the ETSB subgroup. Participants exposed to ETS were more likely to have had upper respiratory tract and middle ear infections during the neonatal period and had higher mean dmft, mean dmfs, mean percent of surfaces with demarcated opacities and mean GI than the non-ETS participants. The children exposed to ETS before and after birth had the highest occurrence of enamel opacities showed a higher risk for dental caries even though more children in this group used the recommended fluoride toothpaste (1000 ppm fluoride). Mothers who smoked either never breastfed their children or breastfed their children for less than the recommended period of 6 months. Children exposed to ETS were shown to have higher mean total sIgA (μg/ml) than the children in the control group.
CONCLUSIONS: Associations between ETS exposure before and after gestation and oral health, including salivary changes in young children were shown in the present study. Dental health professionals should include a question about household smoking in children's dental histories, which would allow opportunities to discuss the impact of smoking on child oral health. Longitudinal oral health studies should include a history of maternal smoking during pregnancy and afterwards.
METHODS: In vitro cytotoxicity of nordamnacanthal was tested using MTT, cell cycle and Annexin V/PI assays on human MCF-7 and MDA-MB231 breast cancer cells. Mice were orally fed with nordamnacanthal daily for 28 days for oral subchronic toxicity study. Then, the in vivo anti-tumor effect was evaluated on 4T1 murine cancer cells-challenged mice. Changes of tumor size and immune parameters were evaluated on the untreated and nordamnacanthal treated mice.
RESULTS: Nordamnacanthal was found to possess cytotoxic effects on MDA-MB231, MCF-7 and 4T1 cells in vitro. Moreover, based on the cell cycle and Annexin V results, nordamnacanthal managed to induce cell death in both MDA-MB231 and MCF-7 cells. Additionally, no mortality, signs of toxicity and changes of serum liver profile were observed in nordamnacanthal treated mice in the subchronic toxicity study. Furthermore, 50 mg/kg body weight of nordamncanthal successfully delayed the progression of 4T1 tumors in Balb/C mice after 28 days of treatment. Treatment with nordamnacanthal was also able to increase tumor immunity as evidenced by the immunophenotyping of the spleen and YAC-1 cytotoxicity assays.
CONCLUSION: Nordamnacanthal managed to inhibit the growth and induce cell death in MDA-MB231 and MCF-7 cell lines in vitro and cease the tumor progression of 4T1 cells in vivo. Overall, nordamnacanthal holds interesting anti-cancer properties that can be further explored.
OBJECTIVES: To determine the effect of vitamin D supplementation given to infants, or lactating mothers, on vitamin D deficiency, bone density and growth in healthy term breastfed infants.
SEARCH METHODS: We used the standard search strategy of Cochrane Neonatal to 29 May 2020 supplemented by searches of clinical trials databases, conference proceedings, and citations.
SELECTION CRITERIA: Randomised controlled trials (RCTs) and quasi-RCTs in breastfeeding mother-infant pairs comparing vitamin D supplementation given to infants or lactating mothers compared to placebo or no intervention, or sunlight, or that compare vitamin D supplementation of infants to supplementation of mothers.
DATA COLLECTION AND ANALYSIS: Two review authors assessed trial eligibility and risk of bias and independently extracted data. We used the GRADE approach to assess the certainty of evidence.
MAIN RESULTS: We included 19 studies with 2837 mother-infant pairs assessing vitamin D given to infants (nine studies), to lactating mothers (eight studies), and to infants versus lactating mothers (six studies). No studies compared vitamin D given to infants versus periods of infant sun exposure. Vitamin D supplementation given to infants: vitamin D at 400 IU/day may increase 25-OH vitamin D levels (MD 22.63 nmol/L, 95% CI 17.05 to 28.21; participants = 334; studies = 6; low-certainty) and may reduce the incidence of vitamin D insufficiency (25-OH vitamin D < 50 nmol/L) (RR 0.57, 95% CI 0.41 to 0.80; participants = 274; studies = 4; low-certainty). However, there was insufficient evidence to determine if vitamin D given to the infant reduces the risk of vitamin D deficiency (25-OH vitamin D < 30 nmol/L) up till six months of age (RR 0.41, 95% CI 0.16 to 1.05; participants = 122; studies = 2), affects bone mineral content (BMC), or the incidence of biochemical or radiological rickets (all very-low certainty). We are uncertain about adverse effects including hypercalcaemia. There were no studies of higher doses of infant vitamin D (> 400 IU/day) compared to placebo. Vitamin D supplementation given to lactating mothers: vitamin D supplementation given to lactating mothers may increase infant 25-OH vitamin D levels (MD 24.60 nmol/L, 95% CI 21.59 to 27.60; participants = 597; studies = 7; low-certainty), may reduce the incidences of vitamin D insufficiency (RR 0.47, 95% CI 0.39 to 0.57; participants = 512; studies = 5; low-certainty), vitamin D deficiency (RR 0.15, 95% CI 0.09 to 0.24; participants = 512; studies = 5; low-certainty) and biochemical rickets (RR 0.06, 95% CI 0.01 to 0.44; participants = 229; studies = 2; low-certainty). The two studies that reported biochemical rickets used maternal dosages of oral D3 60,000 IU/day for 10 days and oral D3 60,000 IU postpartum and at 6, 10, and 14 weeks. However, infant BMC was not reported and there was insufficient evidence to determine if maternal supplementation has an effect on radiological rickets (RR 0.76, 95% CI 0.18 to 3.31; participants = 536; studies = 3; very low-certainty). All studies of maternal supplementation enrolled populations at high risk of vitamin D deficiency. We are uncertain of the effects of maternal supplementation on infant growth and adverse effects including hypercalcaemia. Vitamin D supplementation given to infants compared with supplementation given to lactating mothers: infant vitamin D supplementation compared to lactating mother supplementation may increase infant 25-OH vitamin D levels (MD 14.35 nmol/L, 95% CI 9.64 to 19.06; participants = 269; studies = 4; low-certainty). Infant vitamin D supplementation may reduce the incidence of vitamin D insufficiency (RR 0.61, 95% CI 0.40 to 0.94; participants = 334; studies = 4) and may reduce vitamin D deficiency (RR 0.35, 95% CI 0.17 to 0.72; participants = 334; studies = 4) but the evidence is very uncertain. Infant BMC and radiological rickets were not reported and there was insufficient evidence to determine if maternal supplementation has an effect on infant biochemical rickets. All studies enrolled patient populations at high risk of vitamin D deficiency. Studies compared an infant dose of vitamin D 400 IU/day with varying maternal vitamin D doses from 400 IU/day to > 4000 IU/day. We are uncertain about adverse effects including hypercalcaemia.
AUTHORS' CONCLUSIONS: For breastfed infants, vitamin D supplementation 400 IU/day for up to six months increases 25-OH vitamin D levels and reduces vitamin D insufficiency, but there was insufficient evidence to assess its effect on vitamin D deficiency and bone health. For higher-risk infants who are breastfeeding, maternal vitamin D supplementation reduces vitamin D insufficiency and vitamin D deficiency, but there was insufficient evidence to determine an effect on bone health. In populations at higher risk of vitamin D deficiency, vitamin D supplementation of infants led to greater increases in infant 25-OH vitamin D levels, reductions in vitamin D insufficiency and vitamin D deficiency compared to supplementation of lactating mothers. However, the evidence is very uncertain for markers of bone health. Maternal higher dose supplementation (≥ 4000 IU/day) produced similar infant 25-OH vitamin D levels as infant supplementation of 400 IU/day. The certainty of evidence was graded as low to very low for all outcomes.
OBJECTIVES: To assess the risks and benefits of fluid supplementation compared to standard fluid management in term and preterm newborn infants with unconjugated hyperbilirubinaemia who require phototherapy.
SEARCH METHODS: We used the standard search strategy of Cochrane Neonatal to search the Cochrane Central Register of Controlled Trials (CENTRAL; 2017, Issue 5), MEDLINE via PubMed (1966 to 7 June 2017), Embase (1980 to 7 June 2017), and CINAHL (1982 to 7 June 2017). We also searched clinical trials databases, conference proceedings, and the reference lists of retrieved articles for randomised controlled trials and quasi-randomised trials.
SELECTION CRITERIA: We included randomised controlled trials that compared fluid supplementation against no fluid supplementation, or one form of fluid supplementation against another.
DATA COLLECTION AND ANALYSIS: We extracted data using the standard methods of the Cochrane Neonatal Review Group using the Covidence platform. Two review authors independently assessed the eligibility and risk of bias of the retrieved records. We expressed our results using mean difference (MD), risk difference (RD), and risk ratio (RR) with 95% confidence intervals (CIs).
MAIN RESULTS: Out of 1449 articles screened, seven studies were included. Three articles were awaiting classification, among them, two completed trials identified from the trial registry appeared to be unpublished so far.There were two major comparisons: IV fluid supplementation versus no fluid supplementation (six studies) and IV fluid supplementation versus oral fluid supplementation (one study). A total of 494 term, healthy newborn infants with unconjugated hyperbilirubinaemia were evaluated. All studies were at high risk of bias for blinding of care personnel, five studies had unclear risk of bias for blinding of outcome assessors, and most studies had unclear risk of bias in allocation concealment. There was low- to moderate-quality evidence for all major outcomes.In the comparison between IV fluid supplementation and no supplementation, no infant in either group developed bilirubin encephalopathy in the one study that reported this outcome. Serum bilirubin was lower at four hours postintervention for infants who received IV fluid supplementation (MD -34.00 μmol/L (-1.99 mg/dL), 95% CI -52.29 (3.06) to -15.71 (0.92); participants = 67, study = 1) (low quality of evidence, downgraded one level for indirectness and one level for suspected publication bias). Beyond eight hours postintervention, serum bilirubin was similar between the two groups. Duration of phototherapy was significantly shorter for fluid-supplemented infants, but the estimate was affected by heterogeneity which was not clearly explained (MD -10.70 hours, 95% CI -15.55 to -5.85; participants = 218; studies = 3; I² = 67%). Fluid-supplemented infants were less likely to require exchange transfusion (RR 0.39, 95% CI 0.21 to 0.71; RD -0.01, 95% CI -0.04 to 0.02; participants = 462; studies = 6; I² = 72%) (low quality of evidence, downgraded one level due to inconsistency, and another level due to suspected publication bias), and the estimate was similarly affected by unexplained heterogeneity. The frequencies of breastfeeding were similar between the fluid-supplemented and non-supplemented infants in days one to three based on one study (estimate on day three: MD 0.90 feeds, 95% CI -0.40 to 2.20; participants = 60) (moderate quality of evidence, downgraded one level for imprecision).One study contributed to all outcome data in the comparison of IV versus oral fluid supplementation. In this comparison, no infant in either group developed abnormal neurological signs. Serum bilirubin, as well as the rate of change of serum bilirubin, were similar between the two groups at four hours after phototherapy (serum bilirubin: MD 11.00 μmol/L (0.64 mg/dL), 95% CI -21.58 (-1.26) to 43.58 (2.55); rate of change of serum bilirubin: MD 0.80 μmol/L/hour (0.05 mg/dL/hour), 95% CI -2.55 (-0.15) to 4.15 (0.24); participants = 54 in both outcomes) (moderate quality of evidence for both outcomes, downgraded one level for indirectness). The number of infants who required exchange transfusion was similar between the two groups (RR 1.60, 95% CI 0.60 to 4.27; RD 0.11, 95% CI -0.12 to 0.34; participants = 54). No infant in either group developed adverse effects including vomiting or abdominal distension.
AUTHORS' CONCLUSIONS: There is no evidence that IV fluid supplementation affects important clinical outcomes such as bilirubin encephalopathy, kernicterus, or cerebral palsy in healthy, term newborn infants with unconjugated hyperbilirubinaemia requiring phototherapy. In this review, no infant developed these bilirubin-associated clinical complications. Low- to moderate-quality evidence shows that there are differences in total serum bilirubin levels between fluid-supplemented and control groups at some time points but not at others, the clinical significance of which is uncertain. There is no evidence of a difference between the effectiveness of IV and oral fluid supplementations in reducing serum bilirubin. Similarly, no infant developed adverse events or complications from fluid supplementation such as vomiting or abdominal distension. This suggests a need for future research to focus on different population groups with possibly higher baseline risks of bilirubin-related neurological complications, such as preterm or low birthweight infants, infants with haemolytic hyperbilirubinaemia, as well as infants with dehydration for comparison of different fluid supplementation regimen.
MATERIALS AND METHODS: In hepatoprotective activity, liver damage was induced by treating rats with 1.0 mL carbon tetrachloride (CCl4)/kg and MEA extract was administered at a dose of 50, 250 and 500 mg/kg 24 h before intoxication with CCl4. Cytotoxicity study was performed on MCF-7 (human breast cancer), DBTRG (human glioblastoma), PC-3 (human prostate cancer) and U2OS (human osteosarcoma) cell lines. 1H, 13C-NMR (nuclear magnetic resonance), and IR (infrared) spectral analyses were also conducted for MEA extract.
RESULTS: In hepatoprotective activity evaluation, MEA extract at a higher dose level of 500 mg/kg showed significant (p<0.05) potency. In cytotoxicity study, MEA extract was more toxic towards MCF-7 and DBTRG cell lines causing 78.7% and 64.3% cell death, respectively. MEA extract in 1H, 13C-NMR, and IR spectra exhibited bands, signals and J (coupling constant) values representing aromatic/phenolic constituents.
CONCLUSIONS: From the results, it could be concluded that MEA extract has potency to inhibit hepatotoxicity and MCF-7 and DBTRG cancer cell lines which might be due to the phenolic compounds depicted from NMR and IR spectra.
OBJECTIVES: The aim of this study was to investigate physiological and psychological aspects of mother-infant signaling during breastfeeding experimentally, testing the effects of a relaxation intervention on maternal psychological state, breast milk intake, milk cortisol levels, and infant behavior and growth.
METHODS: Primiparous breastfeeding mothers and full-term infants were randomly assigned to receive relaxation therapy [intervention relaxation group; n = 33 (RG)] or to the control group [n = 31 (CG); no relaxation therapy] at 2 wk postpartum. Both groups received standard breastfeeding support. Home visits were conducted at 2 (HV1), 6 (HV2), 12 (HV3) and 14 (HV4) wk to measure maternal stress and anxiety, breast milk intake and milk cortisol, and infant behavior and growth.
RESULTS: RG mothers had lower stress scores postintervention than the CG (HV3 ∆ = -3.13; 95% CI: -5.9, -0.3) and lower hindmilk cortisol at HV1 (∆ = -44.5%; 95% CI: -76.1%, -12.9%) but not at HV2. RG infants had longer sleep duration (∆ = 82 min/d; 95% CI: 16, 149 min/d) at HV2 and higher gains in weight and body mass index standardized deviation score than the CG infants (∆ = 0.76; 95% CI: 0.3, 1.22; and ∆ = 0.59; 95% CI: 0.09, 1.1, respectively). RG infants had a mean milk intake at HV3 that was 227 g/d higher than that of the CG infants (P = 0.031) after controlling for gender and milk intake at HV1.
CONCLUSIONS: The trial shows the effectiveness of a simple relaxation intervention for improving maternal and infant outcomes and identifies some potential signaling mechanisms for investigation in future and larger studies, especially in settings where mothers are more stressed, such as those with preterm or low birth weight infants. This trial was registered at clinicaltrials.gov as NCT01971216.
MATERIALS AND METHODS: This was a prospective study conducted at a tertiary hospital in Singapore. Healthy pregnant women with the intention to breastfeed were recruited. Diet profile was studied using a standard validated 3-day food diary. Breast milk was collected from mothers at 1 to 2 weeks and 6 to 8 weeks postnatally. Agilent gas chromatograph (6870N) equipped with a mass spectrometer (5975) and an automatic liquid sampler (ALS) system with a split mode was used for analysis.
RESULTS: Seventy-two breast milk samples were obtained from 52 subjects. Analysis showed that breast milk ETA (Eicosatetraenoic acid) and ETA:EA (Eicosatrienoic acid) ratio were significantly different among the races (P = 0.031 and P = 0.020), with ETA being the highest among Indians and the lowest among Malays. Docosahexaenoic acid was significantly higher among Chinese compared to Indians and Malays. No difference was demonstrated in n3 and n6 levels in the food diet analysis among the 3 ethnic groups.
CONCLUSIONS: Differences exist in breast milk fatty acid composition in different ethnic groups in the same region, although no difference was demonstrated in the diet analysis. Factors other than maternal diet may play a role in breast milk fatty acid composition.