METHODS: A cross-sectional investigation was conducted at General Penang Hospital, Malaysia. Demographic criteria and laboratory tests of patients were investigated. Controlled glycemia (CG) was recognized as glycated hemoglobin (HbA1c) ≤7% depending on American Diabetes Association guidelines 2018. Charlson Comorbidity Index (CCI) was used to estimate the confounding influence of co-morbidities and predict ES-10Y. Data was managed by IBM-SPSS 23.0.
RESULTS: A total of 400 cases categorized to (44.25%) patients with CG, and (55.75%) cases had uncontrolled glycemia (UCG). HbA1c mean in CG and UCG group was (6.8 ± 0.9 vs 9.5 ± 1.6, P-value: 0.001). Fasting blood glucose was (7 ± 2.3 vs. 9.9 ± 4.3, P-value: 0.001) in CG and UCG group. CCI was (3.38 ± 2.38 vs. 4.42 ± 2.70, P-value: 0.001) and, ES-10Y was (62% vs 46.2%, p-value: 0.001) in CG vs. UCG respectively. Spearman test indicates a negative correlation between CG and CCI (r: 0.19, p-value: 0.001). Logistic regression confirmed HbA1c as a significant predictor of CCI (r2: 0.036, P-value: 0.001). CG has a positive correlation with survival (r: 0.16, P-value: 0.001) and logistic regression of survival (r2: 0.26, P-value: 0.001).
CONCLUSIONS: More than one-half of the investigated persons had UCG. Controlled HbA1c was associated with lower co-morbidities and higher ES-10Y.
Methods: Triptolide's inhibition of cell viability was detected by sulforhodamine B (SRB) assay. Cell cycle was measured by flow cytometry and cell apoptosis was assessed by flow cytometry and western blot. Expression of β-catenin was analyzed by western blot and immunofluorescence (IF). The anti-tumor effects of triptolide were determined using a subcutaneous in-vivo model. Cell proliferation and apoptosis were evaluated by immunohistochemistry (IHC) and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay, respectively. The expression level of p-p70S6K and p-GSK-3α/β was evaluated by western blot and IHC.
Results: Triptolide inhibited cell proliferation, induced S-phase cell cycle arrest and apoptosis in taxol-resistant A549 (A549/TaxR) cells. Moreover, intraperitoneal injection of triptolide resulted in a significant delay of tumor growth without obvious systemic toxicity in mice. Additionally, triptolide reversed epithelial-mesenchymal transition (EMT) through repression of the p70S6K/GSK3/β-catenin signaling pathway.
Conclusions: Our study provides evidence that triptolide can reverse EMT in taxol-resistant lung adenocarcinoma cells and impairs tumor growth by inhibiting the p70S6K/GSK3/β-catenin pathway, indicating that triptolide has potential to be used as a new therapeutic agent for taxol-resistant lung adenocarcinoma.
METHODS: This was a single-center, retrospective study. Echocardiographic assessment of the LV geometry, mass, and free wall thickness was performed before stenting and before the arterial switch operation. Patients then underwent the arterial switch operation, and the postoperative outcomes were reviewed.
RESULTS: There were 11 consecutive patients (male, 81.8%; mean age at stenting, 43.11 ± 18.19 days) with TGA-IVS with involuted LV who underwent LV retraining by ductal stenting from July 2013 to December 2017. Retraining by ductus stenting failed in 4 patients (36.3%). Two patients required pulmonary artery banding, and another 2 had an LV mass index of less than 35 g/m2. Patients in the successful group had improved LV mass index from 45.14 ± 17.91 to 81.86 ± 33.11g/m2 (p = 0.023) compared with 34.50 ± 10.47 to 20.50 ± 9.88 g/m2 (p = 0.169) and improved LV geometry after ductal stenting. The failed group was associated with an increased need for extracorporeal support (14.5% vs 50%, p = 0.012). An atrial septal defect-to-interatrial septum length ratio of more than 0.38 was associated with failed LV retraining.
CONCLUSIONS: Ductal stenting is an effective method to retrain the involuted LV in TGA-IVS. A large atrial septal defect (atrial septal defect-to-interatrial septum length ratio >0.38) was associated with poor response to LV retraining.
Aim: This study was carried out in order to propose a model to predict regional lymph node metastasis of OSCC using histological parameters such as tumour stage, tumour size, pattern of invasion (POI), differentiation of tumour, and host immune response, together with the expression levels of six biomarkers (periostin, HIF-1α, MMP-9, β-catenin, VEGF-C, and EGFR), and, furthermore, to compare the impact of all these parameters on recurrence and 3 yr and 5 yr survival rates. Materials and Method. Histological materials collected from the archives were used to evaluate histological parameters and immunohistochemical profiles. Standard methods were used for immunohistochemistry and for evaluation of results. Data related to recurrence and survival (3 and 5 years) was also recorded. Clinical data was collected from patients' records.
Results: Male to female ratio was 3 : 1. The commonest site of OSCC was the buccal mucosa, and majority of them were T3 or T4 tumours presented at stage 4. 62.5% of the tumours were well differentiated. Three-year and 5-year survival rates were significantly associated with lymph node metastasis and recurrence. POI was significantly correlated with tumour size, stage, 3-year survival, EGFR, HIF-1α, periostin, and MMP-9 (p < 0.05). Expression of EGFR showed a direct association with metastasis (p < 0.05).
Conclusion: POI, level of differentiation, and expression of EGFR are independent prognostic markers for lymph node metastasis. Therefore, these parameters may help in treatment planning of a clinically negative neck.
OBJECTIVE: This study aims to investigate the cytotoxic effects of betel quid and areca nut extracts on the fibroblast (L929), mouth-ordinary-epithelium 1 (MOE1) and oral squamous cell carcinoma (HSC-2) cell lines.
METHODS: L929, MOE1 and HSC-2 cells were treated with 0.1, 0.2 and 0.4 g/ml of betel quid and areca nut extracts for 24, 48 and 72 h. MTT assay was performed to assess the cell viability.
RESULTS: Both extracts, regardless of concentration, significantly reduced the cell viability of L929 compared with the control (P<0.05). Cell viability of MOE1 was significantly enhanced by all betel quid concentrations compared with the control (P<0.05). By contrast, 0.4 g/ml of areca nut extract significantly reduced the cell viability of MOE1 at 48 and 72 h of incubation. Cell viability of HSC-2 was significantly lowered by all areca nut extracts, but 0.4 g/ml of betel quid significantly increased the cell viability of HSC-2 (P<0.05).
CONCLUSION: Areca nut extract is cytotoxic to L929 and HSC-2, whereas the lower concentrations of areca nut extract significantly increased the cell viability of MOE1 compared to the higher concentration and control group. Although betel quid extract is cytotoxic to L929, the same effect is not observed in MOE1 and HSC-2 cell lines. Further investigations are needed to clarify the mechanism of action.
.
METHODS: DNA methylation profiling was utilized to screen the differentially hypermethylated genes in OSCC. Three selected differentially-hypermethylated genes of p16, DDAH2 and DUSP1 were further validated for methylation status and protein expression. The correlation between demographic, clinicopathological characteristics, and survival rate of OSCC patients with hypermethylation of p16, DDAH2 and DUSP1 genes were analysed in the study.
RESULTS: Methylation profiling demonstrated 33 promoter hypermethylated genes in OSCC. The differentially-hypermethylated genes of p16, DDAH2 and DUSP1 revealed positivity of 78%, 80% and 88% in methylation-specific polymerase chain reaction and 24% and 22% of immunoreactivity in DDAH2 and DUSP1 genes, respectively. Promoter hypermethylation of p16 gene was found significantly associated with tumour site of buccal, gum, tongue and lip (P=0.001). In addition, DDAH2 methylation level was correlated significantly with patients' age (P=0.050). In this study, overall five-year survival rate was 38.1% for OSCC patients and was influenced by sex difference.
CONCLUSIONS: The study has identified 33 promoter hypermethylated genes that were significantly silenced in OSCC, which might be involved in an important mechanism in oral carcinogenesis. Our approaches revealed signature candidates of differentially hypermethylated genes of DDAH2 and DUSP1 which can be further developed as potential biomarkers for OSCC as diagnostic, prognostic and therapeutic targets in the future.