Displaying publications 121 - 125 of 125 in total

Abstract:
Sort:
  1. Norsidah KZ, Asmadi AY, Azizi A, Faizah O, Kamisah Y
    J Physiol Biochem, 2013 Sep;69(3):441-9.
    PMID: 23208529 DOI: 10.1007/s13105-012-0226-3
    Oxidative stress contributes to cardiovascular diseases. We aimed to study the effects of palm tocotrienol-rich fraction (TRF) on plasma homocysteine and cardiac oxidative stress in rats fed with a high-methionine diet. Forty-two male Wistar rats were divided into six groups. The first group was the control. Groups 2-6 were fed 1% methionine diet for 10 weeks. From week 6 onward, folate (8 mg/kg diet) or palm TRF (30, 60 and 150 mg/kg diet) was added into the diet of groups 3, 4, 5 and 6. The rats were then killed. Palm TRF at 150 mg/kg and folate supplementation prevented the increase in plasma total homocysteine (4.14 ± 0.33 and 4.30 ± 0.26 vs 5.49 ± 0.25 mmol/L, p < 0.05) induced by a high-methionine diet. The increased heart thiobarbituric acid reactive substance in rats fed with high-methionine diet was also prevented by the supplementations of palm TRF (60 and 150 mg/kg) and folate. The high-methionine group had a lower glutathione peroxidase activity (49 ± 3 vs 69 ± 4 pmol/mg protein/min) than the control group. This reduction was reversed by palm TRF at 60 and 150 mg/kg diet (p < 0.05), but not by folate. Catalase and superoxide dismutase activities were unaffected by both methionine and vitamin supplementations. In conclusion, palm TRF was comparable to folate in reducing high-methionine diet-induced hyperhomocysteinemia and oxidative stress in the rats' hearts. However, palm TRF was more effective than folate in preserving the heart glutathione peroxidase enzyme activity.
    Matched MeSH terms: Folic Acid/administration & dosage
  2. Tripathi M, Zhang CW, Singh BK, Sinha RA, Moe KT, DeSilva DA, et al.
    Cell Death Dis, 2016 12 08;7(12):e2513.
    PMID: 27929536 DOI: 10.1038/cddis.2016.374
    Hyperhomocysteinemia (HHcy) is a well-known risk factor for stroke; however, its underlying molecular mechanism remains unclear. Using both mouse and cell culture models, we have provided evidence that impairment of autophagy has a central role in HHcy-induced cellular injury in the mouse brain. We observed accumulation of LC3B-II and p62 that was associated with increased MTOR signaling in human and mouse primary astrocyte cell cultures as well as a diet-induced mouse model of HHcy, HHcy decreased lysosomal membrane protein LAMP2, vacuolar ATPase (ATP6V0A2), and protease cathepsin D, suggesting that lysosomal dysfunction also contributed to the autophagic defect. Moreover, HHcy increased unfolded protein response. Interestingly, Vitamin B supplementation restored autophagic flux, alleviated ER stress, and reversed lysosomal dysfunction due to HHCy. Furthermore, the autophagy inducer, rapamycin was able to relieve ER stress and reverse lysosomal dysfunction caused by HHcy in vitro. Inhibition of autophagy by HHcy exacerbated cellular injury during oxygen and glucose deprivation and reperfusion (OGD/R), and oxidative stress. These effects were prevented by Vitamin B co-treatment, suggesting that it may be helpful in relieving detrimental effects of HHcy in ischemia/reperfusion or oxidative stress. Collectively, these findings show that Vitamin B therapy can reverse defects in cellular autophagy and ER stress due to HHcy; and thus may be a potential treatment to reduce ischemic damage caused by stroke in patients with HHcy.
    Matched MeSH terms: Folic Acid/pharmacology
  3. Munusamy K, Loke MF, Vadivelu J, Tay ST
    Microb Pathog, 2021 Mar;152:104614.
    PMID: 33202254 DOI: 10.1016/j.micpath.2020.104614
    Candidiasis is the most common fungal infection associated with high morbidity and mortality among immunocompromised patients. The ability to form biofilm is essential for Candida albicans pathogenesis and drug resistance. In this study, the planktonic cell and biofilm proteomes of C. albicans SC5314 strain analyzed using Liquid Chromatography-Mass Spectrometry (LC-MS) were compared. In total, 280 and 449 proteins are annotated from the planktonic cell and biofilm proteomes, respectively. The biofilm proteome demonstrated significantly higher proportion of proteins associated with the endomembrane system, mitochondrion and cytoplasm than planktonic proteome. Among proteins detected, 143 and 207 biological processes are annotated, of which, 38 and 102 are specific to the planktonic cell and biofilm proteomes, respectively, while 105 are common biological processes. The specific biological processes of C. albicans planktonic cell proteome are associated with cell polarity, energy metabolism and nucleotide (purine) metabolism, oxido-reduction coenzyme metabolic process, monosaccharide and amino acid (methionine) biosynthesis, regulation of anatomical structure morphogenesis and cell cycling, and single organism reproduction. Meanwhile, regulation of cellular macromolecule biosynthesis and metabolism, transcription and gene expression are major biological processes specifically associated with C. albicans biofilm proteome. Biosynthesis of leucine, isoleucine, and thiocysteine are highlighted as planktonic-related pathways, whereas folate metabolism, fatty acid metabolism and biosynthesis of amino acids (lysine, serine and glycine) are highlighted as biofilm-related pathways. In summary, LC-MS-based proteomic analysis reveals different adaptative strategies of C. albicans via specific biological and metabolic processes for planktonic cell and biofilm lifestyles. The mass spectrometry data are available via ProteomeXchange with identifiers PXD007830 (for biofilm proteome) and PXD007831 (for planktonic cell proteome).
    Matched MeSH terms: Folic Acid
  4. Phan, CL, Zubaidah, Z., Gregory, A.R.A., Ten, SK, Kamariah, M.N., Thilagavathi, S., et al.
    Medicine & Health, 2006;1(1):36-44.
    MyJurnal
    Fragile X syndrome is a result of an unstable expansion of (CGG)n trinucleotide sequences in the FMR-1 (Fragile X Mental Retardation 1) gene site at Xq27. In a normal person, n ranges from 6 to 40 repeats with an average of 30 repeats, whereas in a mutated FMR1 gene the sequence is repeated several times over (stuttering gene). Full mutation occurs when n equals 200 repeats or more. Where n equals 50 to 200 repeats, it is a premutation. Fragile X occurs when the FMR-1 gene is unable to make normal amounts of usable Fragile X Mental Retardation Protein, or FMRP. The amount of FMRP in the body is one factor that determines the severity of the Fragile X syndrome. A person with nearly normal levels of FMRP usually has mild or no symptoms, while a person with very little or no normal FMRP has more severe symptoms. The mechanism for the role of the FMRP gene is still being researched upon. However, it has been observed that large numbers of repeats (more than 200) inactivates the gene through a process of methylation and when the gene is inactivated, the cell may make little or none of the needed FMRP. Inheritance is X-linked with reduced penetrance and the frequency of occurrence goes up through generations. The phenotypic manifestations of fragile-X syndrome vary and are largely dependent on the size of the mutation or premutation. The identification of the fragile site on G banded metaphases is a time consuming and delicate process requiring experience and skill, however, molecular diagnosis using DNA analysis and Southern blotting, even though expensive, is more specific in determining the presence or absence of the gene. This study was aimed to establish a rapid polymerase chain reaction (PCR) based - touch down PCR, as a screening method for fragile X syndrome. A total of six cases were analysed. Of these, one was a known case of Fragile X (T1) diagnosed by conventional cytogenetics, two were from the latter’s family members namely, his mother (T2) and father (T3), and the other two (T4 and T5) were randomly selected from patients presenting with dysmorphic features and delayed development respectively. One normal control (TC) was included. Cytogenetic analyses for detection of the fragile site was carried out in all cases. Two culture systems were used, namely the synchronised lymphocyte culture and the folate - thymidine deficient culture. Stained metaphases from the fragile X cultures were screened for the presence of the fragile site on the X chromosome. G-banded karyotyping was done using an image analyser to exclude presence of chromosomal abnormalities. DNA was extracted from these samples and amplified by touch-down PCR. Cytogenetic analysis revealed a folate-sensitive fragile site in the affected male, but none in the other five samples. G-banded karyotyping exhibited no additional chromosomal abnormalities. All extracted DNA samples were successfully amplified. Five of the samples showed presence of the product at the expected band at 552bp, excluding the presence of an expansion of CGG segment of the FMR-1 gene. The absence of a band in an affected individual, suggested a fully mutated allele of FRAXA (Folate Sensitive Fragile Site at Xq28). We succeeded in establishing a slightly modified touch-down PCR analysis. Our study indicates that PCR testing offers a rapid and specific method for screening of normal allele and full mutation of the fragile X gene. We suggest this technique to be applied as a complementary tool for cytogenetic analysis to detect the FRAXA gene.
    Matched MeSH terms: Folic Acid
  5. Ng TP
    Sains Malaysiana, 2016;45:1351-1355.
    Dementia poses a major global burden of care to society and health systems in ageing populations. The majority (over 60%) of persons with dementia in the world are found in Asia and developing countries with rapid rates of population ageing. Improving and maintaining the cognitive health of older persons is vital to national strategies for dementia prevention. Increasing numbers of population-based ageing cohort studies in the past decade have provided a better understanding of the factors that contribute to cognitive function and decline in old age. The roles of major demographic, psychosocial, lifestyle, behavioral and cardiovascular risk factors contributing to cognitive health were discussed using examples from the Singapore Longitudinal Ageing Studies. They include socio-demographic factors, particularly education and marital status, leisure time activity such as physical activity, social engagement and mental activities, psychological factors such as depression, cardiovascular and metabolic risk factors: obesity, diabetes, hypertension and dyslipidemia, and the metabolic syndrome, under-nutrition, low albumin, low hemoglobin, nutritional factors such as blood folate, B12 and homocysteine, omega-3 poly-unsaturated fatty acids, tea drinking and curcumin-rich turmeric in curry meals. These factors are found to be associated variously with cognitive functions (memory and learning, language, visuospatial, attention and information processing speed), rates of cognitive impairment and cognitive decline, or increased risk of developing MCI and progression to dementia.
    Matched MeSH terms: Folic Acid
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links