Displaying publications 121 - 140 of 250 in total

Abstract:
Sort:
  1. Islam MT, Alam T, Yahya I, Cho M
    Sensors (Basel), 2018 Nov 30;18(12).
    PMID: 30513701 DOI: 10.3390/s18124212
    In this paper, an inkjet-printed flexible Radio-Frequency Identification (RFID) tag antenna is proposed for an ultra-high frequency (UHF) sensor application. The proposed tag antenna facilitates a system-level solution for low-cost and faster mass production of RFID passive tag antenna. The tag antenna consists of a modified meander line radiator with a semi-circular shaped feed network. The structure is printed on photo paper using silver nanoparticle conductive ink. The generic design outline, as well as tag antenna performances for several practical application aspects are investigated. The simulated and measured results verify the coverage of universal UHF RFID band with an omnidirectional radiation pattern and a long-read range of 15 ft. In addition, the read range for different bending angles and lifetimes of the tag antenna are also demonstrated.
    Matched MeSH terms: Paper
  2. Adam, M.B., Norazman, N., Mohamad Kasim, M.R.
    MATEMATIKA, 2018;34(1):113-123.
    MyJurnal
    Logging activity is one of the most important activities for tropical countries
    including Malaysia, as it produces quality trees for papers. One of the important tree
    species is the Acacia Mangium which it produces a soft tree for papermaking enterprises.
    The papers are exported to Europe and countries which have high demand for paper
    due to the rapid development of the printing industry. Thus we analyzed the height for
    individual trees. We investigate the maximum height of the trees from 1990 to 2006
    and we fit the data using extreme value model. Some of the data are missing and three
    imputation methods we used to solve this problem.
    Matched MeSH terms: Paper
  3. Rose Farahiyan Munawar, Sarani Zakaria, Shahidan Radiman, Chia CH, Mustaffa Abdullah, Yamauchi T
    Magnetic paper were prepared via the in situ synthesis method with ferrites in the presence of polyethylenimine (PEI). In this work, the thermomechanical pulp (TMP) fibers were used due to low percentage of collapse lumen and the large lumen size for optimum loading degree. Four cycles of the reaction were performed on the TMP fibers with pH values of 4-10. It was found that variation of pH value played an important role in the loading degree of pulp during synthesis process. The magnetic, morphological and structural properties of the magnetic paper obtained were reported. At the
    optimum pH of 6.0, saturation magnetization was found to be 3.08 emu/g, remainance magnetization was 0.11 emu/g and coercive force was 12.64 Oe. The optimum loading degree was found to be 23.25%.
    Matched MeSH terms: Paper
  4. Rohaya Othman, Nasharuddin Isa, Sarani Zakaria, Chia CH, Ainun Zuriyati
    Precipitated calcium carbonate fillers were loaded into the lumen of bleached mixed tropical hardwood pulp using polyethylenimine (PEI) and alum. Our results indicated that the addition of (PEI) increased the degree of loading of precipitated calcium carbonate (PCC) into the lumen of fibers. The degree of loading also increased with the addition of alum together with PEI. The mechanical strengths of the produced lumen loaded paper increased with the addition of PEI and alum. Meanwhile the mechanical strength without alum had slightly increased the mechanical strengths of the paper. Electron micrographs revealed that the PCC fillers were successfully loaded into the lumen of the fibers.
    Matched MeSH terms: Paper
  5. Nur Arina Basilah Kamisan, Abdul Ghapor Hussin, Yong Zulina Zubairi
    In this paper, four types of circular probability distribution were used to evaluate which circular probability distribution gives the best fitting for southwesterly Malaysian wind direction data, namely circular uniform distribution, von Mises distribution, wrapped-normal distribution and wrapped-Cauchy distribution. The four locations chosen were Alor Setar, Langkawi, Melaka and Senai. Two performance indicators or goodness of fit tests which are mean circular distance and chord length were used to test which distribution give the best fitting.
    Matched MeSH terms: Paper
  6. Rakhimov SI, Mohamed Othman
    Iterative methods, particularly over-relaxation methods, are efficiently and frequently used to solve large systems of linear equations, because in the solutions of partial differential equations, these methods are applied to systems which are resulted from different iterative schemes to discrete equations. In this paper we formulate an accelerated over-relaxation (AOR) method with the quarter-sweep iterative scheme applied to the Poisson equation. To benchmark the new method we conducted experiments by comparing it with the previous AOR methods based on full- and half-sweep iterative schemes. The results of the experiments and the estimation of the computational complexity of the methods proved the superiority of the new method.
    Matched MeSH terms: Paper
  7. Borza M, Rambely A, Saraj M
    Sains Malaysiana, 2012;41:1651-1656.
    In this paper, two approaches were introduced to obtain Stackelberg solutions for two-level linear fractional programming problems with interval coefficients in the objective functions. The approaches were based on the Kth best method and the method for solving linear fractional programming problems with interval coefficients in the objective function. In the first approach, linear fractional programming with interval coefficients in the objective function and linear programming were utilized to obtain Stackelberg solution, but in the second approach only linear programming is used. Since a linear fractional programming with interval coefficients can be equivalently transformed into a linear programming, therefore both of approaches have same results. Numerical examples demonstrate the feasibility and effectiveness of the methods.
    Matched MeSH terms: Paper
  8. Rashid M, Huda N, Norelyza H, Hasyimah N
    Sains Malaysiana, 2015;44:565-569.
    A new type of cyclone design configuration called MR-deDuster, which contains multi cyclone, has been developed.
    A theoretical study had been carried out to evaluate and predict the performance of a MR-deDuster. In this paper, a
    comparative study was done to investigate the performance of MR-deDuster with other conventional cyclones in terms
    of collection efficiency and pressure drop. The performance of MR-deDuster was measured by its collection efficiency
    based on the particle size distribution of activated carbon. It was found that MR-deDuster is able to collect as high as
    94% of PM10 which is high comparing with many other conventional cyclones. In addition, the pressure drop of the unit
    is relatively low compared to the other cyclones which highlight the ability of the unit to capture the fine particle at low
    pressure drop.
    Matched MeSH terms: Paper
  9. Kamarulzaman bin Ibrahim
    An integral art of the Bayesian approach which is not present in the classical approach is the prior distribution. Different researchers may have different level of prior knowledge regarding the parameter of interest before seeing the data. Sometimes different prior distributions can result in different decisions, as such investigations have to be careful in making the choice of the prior distribution. In this paper, we compare results from the Bayesian analyses based on three possible choices of the prior distributions, which are uniform prior, lognormal prior and an improper prior, in the evaluation of the effectiveness of mini-roundabouts. Data from five before and after studies into the effect of mini-roundabouts when replacing priority junctions are used. The effects of the different prior distributions are distinguishable from the analysis of an anamolous 'desk-drawer' study. The uniform and improper prior pull the estimated treatment effect away from one more than the lognormal prior. The results based on lognormal prior depict a less worst scenario of the ineffectiveness of mini-roundabouts and this may correspond to the deficiency in engineering design at only a few sites. Consequently, it is more appropriate to use the lognormal prior in the analysis of mini-roundabouts as a road safety measure.
    Satu ciri yang penting dalam kaedah Bayesian yang tidak ada dalam kaedah klasik ialah taburan prior. Sebelum melihat data, mungkin setiap penyelidik mempunyai tahap pengetahuan prior yang berbeza berkenaan sesuatu parameter yang ingin dikaji. Kadang-kala taburan prior yang berlainan boleh menghasilkan keputusan yang berlainan. Oleh itu, pengkaji perlu berhati-hati dalam memilih taburan prior. Dalam kertas-kerja ini, kami bandingkan keputusan dari analisis Bayesian berdasarkan tiga pilihan taburan prior yang menasabah iaitu prior seragam, prior lognormal dan prior tak wajar untuk menilai keberkesanan bulatan mini. Data dari kajian-kajian sebelum dan selepas terhadap kesan mengantikan persimpangan dengan bulatan mini digunakan. Kesan taburan prior yang berlainan dapat dibezakan berasaskan keputusan analisis terhadap satu kajian 'laci-meja' yang ganjil. Prior seragam dan prior fak wajar felah menyebabkan anggaran nilai kesan rawatan melebihi satu lebih dari prior lognormal. Keputusan berasaskan prior lognormal ini menunjukkan senario yang kurang teruk tentang kurang berkesannya bulatan mini dan mungkin ini boleh dikaitkan dengan rekabentuk kejuruteraan yang tidak baik di beberapa tempat sahaja. Dengan itu, prior lognormal adalah lebih sesuai digunakan untuk menilai bulatan mini sebagai langkah keselamatan jalanraya.
    Matched MeSH terms: Paper
  10. Ro?ca AV, Rosca NC, Pop I
    Sains Malaysiana, 2014;43:1239-1247.
    The paper reconsiders the problem of the mixed convection boundary layer flow near the lower stagnation point of a horizontal circular cylinder with a second order slip velocity model and a constant surface heat flux studied recently by RoKa et al. (2013). The ordinary (similarity) differential equations are solved numerically using the function bvp4c from Matlab for different values of the governing parameters. It is found that the similarity equations have two branches, upper and lower branch solutions, in a certain range of the mixed convection parameters. A stability analysis has been performed to show that the upper branch solutions are stable and physically realizable, while the lower branch solutions are not stable and therefore, not physically possible. This stability analysis is different by that presented by RoKa et al. (2013), who have presented a time-dependent analysis to determine the stability of the solution branches.
    Matched MeSH terms: Paper
  11. Fanhui-Zeng, Jianchun-Guo, Yuxuan-Liu
    Sains Malaysiana, 2015;44:1377-1388.
    Hydraulic fracturing becomes more difficult when confronted with a formation of high fracturing pressure. In such formations, acidizing before the main fracturing treatment provide a method to reduce fracture pressure. The aim of this paper was to investigate the evolution of fracture pressure in a wellbore with acidizing. Five experiments were conducted to study the mechanisms of acid damage on reservoir minerals and cementing materials properties. Consequently, a mathematical model to predict fracture pressure with acidizing has been established and verified by field data. The analysis results showed that it is possible to reduce fracture pressure with decreased rock strength and fracture critical stress intensity factor by means of acid damage. Acid damage destroys the crystal structure of mineral particles, breaks the crystalline layers in cementing materials, increases rock porosity and reduces the rock strength. In addition, as the acid concentration, formation temperature and acid treatment time increased, it was useful to reduce fracture pressure in the wellbore. Using the proposed model, we were able to select the optimal acid damage construction parameters to reduce fracture pressure.
    Matched MeSH terms: Paper
  12. Zanariah Abdul Majid, Mohamed Suleiman
    Sains Malaysiana, 2006;35:63-68.
    In this paper, a direct integration implicit variable step size method in the form of Adams Moulton Method is developed for solving directly the second order system of ordinary differential equations (ODEs) using variable step size. The existing multistep method involves the computations of the divided differences and integration coefficients in the code when using the variable step size or variable step size and order. The idea of developing this method is to store all the coefficients involved in the code. Thus, this strategy can avoid the lengthy computation of the coefficients during the implementation of the code as well as to improve the execution time. Numerical results are given to compare the efficiency of the developed method with the 1-point method of variable step size and order code (1PDVSO) in Omar (1999).
    Matched MeSH terms: Paper
  13. Nuradhiathy Abd Razak, Yong Zulina Zubairi, Rossita M. Yunus
    Sains Malaysiana, 2014;43:1599-1607.
    Missing values have always been a problem in analysis. Most exclude the missing values from the analyses which may lead to biased parameter estimates. Some imputations methods are considered in this paper in which simulation study is conducted to compare three methods of imputation namely mean substitution, hot deck and expectation maximization (EM) imputation. The EM imputation is found to be superior especially when the percentage of missing values is high as it constantly gives low RMSE as compared with other two methods. The EM imputation method is then applied to the PM10 concentrations data set for the southwest and northeast monsoons in Petaling Jaya and Seberang Perai, Malaysia which has missing values. Four types of distributions, namely the Weibull, lognormal, gamma and Gumbel distribution are considered to describe the PM10 concentrations. The Weibull distribution gives the best fit for the southwest monsoon data for Petaling Jaya. The lognormal distribution outperformed the others in describing the southwest monsoon in Seberang Perai. Meanwhile, for the northeast monsoon in both locations, gamma distribution is the best distribution to describe the data.
    Matched MeSH terms: Paper
  14. Singh G, Makinde OD
    Sains Malaysiana, 2014;43:483-489.
    The paper is aimed at studying fluid flow heat transfer in the axisymmetric boundary layer flow of a viscous incompressible fluid, along the axial direction of a vertical stationary isothermal cylinder in presence of uniform free stream with momentum slip. The equations governing the flow i.e. continuity, momentum and energy equation are transformed into non-similar boundary layer equations and are solved numerically employing asymptotic series method with Shanks transformation. The numerical scheme involves the Runge-Kutta fourth order scheme along with the shooting technique. The flow is analyzed for both assisting and opposing buoyancy and the effect of different parameters on fluid velocity, temperature distribution, heat transfer and shear stress parameters is presented graphically.
    Matched MeSH terms: Paper
  15. Roslinda Nazar, Pop I
    The unsteady mixed convection boundary layer flow near the forward stagnation point of a two-dimensional symmetric body prescribed by a uniform heat flux rate is studied in this paper. The main aim of the investigation is to identify situations in which dual solutions for the steady-state flow can be determined when the flow is opposing. It is also shown that there is a smooth transition from the unsteady initial flow (short time) to the final steady state flow (large time).
    Matched MeSH terms: Paper
  16. Abu Hassan Shaari Mohd Nor, Tan YL, Fauziah Maarof
    Sains Malaysiana, 2007;36:225-232.
    The main objective of this paper is to explore the varying volatility dynamic of inflation rate in Malaysia for the period from January 1980 to December 2004. The GARCH, GARCH-Mean, EGARCH and EGARCH-Mean models are used to capture the stochastic variation and asymmetries in the economic instruments. Results show that the EGARCH model gives better estimates of sub-periods volatility. Further analysis using Granger causality test show that there is sufficient empirical evidence that higher inflation rate level will result in higher future inflation uncertainty and higher level of inflation uncertainty will lead to lower future inflation rate.
    Matched MeSH terms: Paper
  17. Abdul Ghapor Hussin, Norli Anida Abdullah, Ibrahim Mohamed
    This paper gives a comprehensive discussion on complex regression model by extending the idea of regression model to circular variables. Various aspect have been considered such as the biasness of parameters, error assumptions and model checking. The advantage of this approach is that it allows the use of usual technique available in ordinary linear regression for the regression of circular variables. The quality of the estimates and the feasibility of the approach were illustrated via simulation. The model was then applied to the wave direction data.
    Matched MeSH terms: Paper
  18. Hosseingholi Pourasl A, Ariffin SHS, Ahmadi MT, Ismail R, Gharaei N
    Beilstein J Nanotechnol, 2019;10:644-653.
    PMID: 30931206 DOI: 10.3762/bjnano.10.64
    Nanomaterial-based sensors with high sensitivity, fast response and recovery time, large detection range, and high chemical stability are in immense demand for the detection of hazardous gas molecules. Graphene nanoribbons (GNRs) which have exceptional electrical, physical, and chemical properties can fulfil all of these requirements. The detection of gas molecules using gas sensors, particularly in medical diagnostics and safety applications, is receiving particularly high demand. GNRs exhibit remarkable changes in their electrical characteristics when exposed to different gases through molecular adsorption. In this paper, the adsorption effects of the target gas molecules (CO and NO) on the electrical properties of the armchair graphene nanoribbon (AGNR)-based sensor are analytically modelled. Thus, the energy dispersion relation of AGNR is developed considering the molecular adsorption effect using a tight binding (TB) method. The carrier velocity is calculated based on the density of states (DOS) and carrier concentration (n) to obtain I-V characteristics and to monitor its variation in the presence of the gas molecules. Furthermore, the I-V characteristics and energy band structure of the AGNR sensor are simulated using first principle calculations to investigate the gas adsorption effects on these properties. To ensure the accuracy of the proposed model, the I-V characteristics of the AGNR sensor that are simulated based both on the proposed model and first principles calculations are compared, and an acceptable agreement is achieved.
    Matched MeSH terms: Paper
  19. Iqbal A, Smida A, Saraereh OA, Alsafasfeh QH, Mallat NK, Lee BM
    Sensors (Basel), 2019 Mar 08;19(5).
    PMID: 30857265 DOI: 10.3390/s19051200
    A compact, cylindrical dielectric resonator antenna (CDRA), using radio frequency signals to identify different liquids is proposed in this paper. The proposed CDRA sensor is excited by a rectangular slot through a 3-mm-wide microstrip line. The rectangular slot has been used to excite the CDRA for H E M 11 mode at 5.25 GHz. Circuit model values (capacitance, inductance, resistance and transformer ratios) of the proposed CDRA are derived to show the true behaviour of the system. The proposed CDRA acts as a sensor due to the fact that different liquids have different dielectric permittivities and, hence, will be having different resonance frequencies. Two different types of CDRA sensors are designed and experimentally validated with four different liquids (Isopropyl, ethanol, methanol and water).
    Matched MeSH terms: Paper
  20. Mohammed, Kachalla, Kareem, Shatha Sahib
    MyJurnal
    Structural buildings in seismic prone area, the required energy dissipation of strong column-weak beam especially for reinforced concrete frame structures is achievably through adequate beam-column joint strengthening connection in order to have high seismic performance. Literature investigation shows several approaches and techniques for modelling the weak joint for a typical frame structure. This paper extensively reviews those techniques, methods, concepts and their performance in improving the shear capacity for a deficient reinforced concrete beam-column joints in withstanding seismic loads. The beam-column joints performance responses showed positive. However, the need for an improved connection that will offer high ductility capacity and energy dissipation ability for post-tensioned reinforced concrete beam-column joints with continuing bottom reinforcement is highly feasible with the use of the Direct Displacement Based design philosophy. This will be of great interest for the future development of highly efficient joint system for frame structure capable of resisting significant seismic load.
    Matched MeSH terms: Paper
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links