Displaying publications 121 - 131 of 131 in total

Abstract:
Sort:
  1. Hussain MA, Shah A, Jantan I, Shah MR, Tahir MN, Ahmad R, et al.
    Int J Nanomedicine, 2015;10:2079-88.
    PMID: 25844038 DOI: 10.2147/IJN.S75874
    Polysaccharides are attracting the vigil eye of researchers in order to design the green synthesis of silver nanoparticles (Ag NPs) of diverse size, shape, and application. We report an environmentally friendly method to synthesize Ag NPs where no physical reaction conditions were employed. Hydroxypropylcellulose (HPC) was used as a template nanoreactor, stabilizer, and capping agent to obtain Ag NPs. Different concentrations of AgNO3 solutions (50 mmol, 75 mmol, and 100 mmol) were mixed with a concentrated aqueous solution of HPC and the progress of the reaction was monitored by noting color changes of the reaction mixture at different reaction times for up to 24 hours. Characteristic ultraviolet-visible spectroscopy (UV/Vis) absorption bands of Ag NPs were observed in the range of 388-452 nm. The morphology of the Ag NPs was studied by scanning electron microscopy, transmission electron microscopy (TEM), and atomic force microscopy. The TEM images confirmed that the size of the Ag NPs was in the range of 25-55 nm. Powder X-ray diffraction studies showed that the crystal phase of the Ag NPs was face-centered cubic. The as-prepared Ag NPs were found to be stable, and no changes in size and morphology were observed after storage in HPC thin films over 1 year, as indicated by UV/Vis spectra. So, the present work furnishes a green and economical strategy for the synthesis and storage of stable Ag NPs. As-synthesized Ag NPs showed significant antimicrobial activity against different bacterial (Escherichia coli, Staphylococcus epidermidis, S. aureus, Bacillus subtilis, Pseudomonas aeruginosa) and fungal strains (Actinomycetes and Aspergillus niger).
    Matched MeSH terms: Silver/chemistry
  2. Azhar NA, Ghozali SZ, Abu Bakar SA, Lim V, Ahmad NH
    Toxicol In Vitro, 2020 Sep;67:104910.
    PMID: 32526345 DOI: 10.1016/j.tiv.2020.104910
    Application of silver nanoparticles serves as a new approach in cancer treatment due to its unique features. Biosynthesis of silver nanoparticles using plant is advantageous since they are easily accessible, nontoxic and produce quicker reaction compared to other methods. To evaluate the cytotoxicity, mechanism of cell death and DNA damage of biosynthesized Catharanthus roseus-silver nanoparticles on human liver cancer (HepG2) cells. The antiproliferative activity of Catharanthus roseus‑silver nanoparticles was measured using MTT assay. The cytotoxic effects were further evaluated by measuring nitric oxide and reactive oxygen species (ROS). The mechanism of cell death was determined by annexin-FITC/propidium iodide, mitochondrial membrane potential (MMP) and cell cycle assays. The assessment of DNA damage was evaluated using Comet assay method. The uptake of the nanoparticles were evaluated by Transmission Electron Microscopy (TEM). Catharanthus roseus‑silver nanoparticles has inhibited the proliferation of HepG2 cells in a time-dependent manner with a median IC50 value of 3.871 ± 0.18 μg/mL. The concentration of nitrite and ROS were significantly higher than control. The cell death was due to apoptosis associated with MMP loss, cell cycle arrest, and extensive DNA damage. TEM analysis indicated the presence of free nanoparticles and endosomes containing the nanoparticles. The findings show that Catharanthus roseus‑silver nanoparticles have produced cytotoxic effects on HepG2 cells and thus may have a potential to be used as an anticancer treatment, particularly for hepatocellular carcinoma.
    Matched MeSH terms: Silver/chemistry
  3. Li Y, Qin T, Ingle T, Yan J, He W, Yin JJ, et al.
    Arch Toxicol, 2017 Jan;91(1):509-519.
    PMID: 27180073 DOI: 10.1007/s00204-016-1730-y
    In spite of many reports on the toxicity of silver nanoparticles (AgNPs), the mechanisms underlying the toxicity are far from clear. A key question is whether the observed toxicity comes from the silver ions (Ag(+)) released from the AgNPs or from the nanoparticles themselves. In this study, we explored the genotoxicity and the genotoxicity mechanisms of Ag(+) and AgNPs. Human TK6 cells were treated with 5 nM AgNPs or silver nitrate (AgNO3) to evaluate their genotoxicity and induction of oxidative stress. AgNPs and AgNO3 induced cytotoxicity and genotoxicity in a similar range of concentrations (1.00-1.75 µg/ml) when evaluated using the micronucleus assay, and both induced oxidative stress by measuring the gene expression and reactive oxygen species in the treated cells. Addition of N-acetylcysteine (NAC, an Ag(+) chelator) to the treatments significantly decreased genotoxicity of Ag(+), but not AgNPs, while addition of Trolox (a free radical scavenger) to the treatment efficiently decreased the genotoxicity of both agents. In addition, the Ag(+) released from the highest concentration of AgNPs used for the treatment was measured. Only 0.5 % of the AgNPs were ionized in the culture medium and the released silver ions were neither cytotoxic nor genotoxic at this concentration. Further analysis using electron spin resonance demonstrated that AgNPs produced hydroxyl radicals directly, while AgNO3 did not. These results indicated that although both AgNPs and Ag(+) can cause genotoxicity via oxidative stress, the mechanisms are different, and the nanoparticles, but not the released ions, mainly contribute to the genotoxicity of AgNPs.
    Matched MeSH terms: Silver/chemistry
  4. Sathishkumar P, Preethi J, Vijayan R, Mohd Yusoff AR, Ameen F, Suresh S, et al.
    PMID: 27541567 DOI: 10.1016/j.jphotobiol.2016.08.005
    In this present investigation, AgNPs were green synthesised using Coriandrum sativum leaf extract. The physicochemical properties of AgNPs were characterised using UV-visible spectrophotometer, field emission scanning microscopy/energy dispersive X-ray (FESEM/EDX), Fourier transformed infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET) analysis. Further, in vitro anti-acne, anti-dandruff and anti-breast cancer efficacy of green synthesised AgNPs were assessed against Propionibacterium acnes MTCC 1951, Malassezia furfur MTCC 1374 and human breast adenocarcinoma (MCF-7) cell line, respectively. The flavonoids present in the plant extract were responsible for the AgNPs synthesis. The green synthesised nanoparticles size was found to be ≈37nm. The BET analysis result shows that the surface area of the synthesised AgNPs was found to be 33.72m(2)g(-1). The minimal inhibitory concentration (MIC) of AgNPs for acne causative agent P. acnes and dandruff causative agent M. furfur was found to be at 3.1 and 25μgmL(-1), respectively. The half maximal inhibitory concentration (IC50) value of the AgNPs for MCF-7 cells was calculated as 30.5μgmL(-1) and complete inhibition was observed at a concentration of 100μgmL(-1). Finally, our results proved that green synthesised AgNPs using C. sativum have great potential in biomedical applications such as anti-acne, anti-dandruff and anti-breast cancer treatment.
    Matched MeSH terms: Silver/chemistry*
  5. Rahim Pouran S, Bayrami A, Mohammadi Arvanag F, Habibi-Yangjeh A, Darvishi Cheshmeh Soltani R, Singh R, et al.
    Colloids Surf B Biointerfaces, 2020 May;189:110878.
    PMID: 32087528 DOI: 10.1016/j.colsurfb.2020.110878
    In this research, a milk thistle seed extract (MTSE)-rich medium was used as a capping and reducing agent for the one-pot biosynthesis of ZnO/Ag (5 wt%) nanostructure. The sample was systematically characterized through various techniques and its strong biomolecule‒metal interface structure was supported by the results. The efficacy of the derived nanostructure (MTSE/ZnO/Ag) was evaluated in vivo on the basis of its therapeutic effects on the main complications of Type 1 diabetes (hyperglycemia, hyperlipidemia, and insulin deficiency). For this purpose, the changes in the plasma values of fasting blood glucose, total cholesterol, total triglyceride, high-density lipoprotein cholesterol, and insulin in alloxan-diabetic Wistar male rats were compared with those in healthy and untreated diabetic controls after a treatment period of 16 days. The antidiabetic results of MTSE/ZnO/Ag were compared with those obtained from pristine ZnO, MTSE, and insulin therapies. The health conditions of the rats with Type 1 diabetes were significantly enhanced after treatment with MTSE/ZnO/Ag (p 
    Matched MeSH terms: Silver/chemistry
  6. Suleman Ismail Abdalla S, Katas H, Chan JY, Ganasan P, Azmi F, Fauzi MB
    Mol Pharm, 2021 05 03;18(5):1956-1969.
    PMID: 33822631 DOI: 10.1021/acs.molpharmaceut.0c01033
    Gelatin hydrogels are attractive for wound applications owing to their well-defined structural, physical, and chemical properties as well as good cell adhesion and biocompatibility. This study aimed to develop gelatin hydrogels incorporated with bio-nanosilver functionalized with lactoferrin (Ag-LTF) as a dual-antimicrobial action dressing, to be used in treating infected wounds. The hydrogels were cross-linked using genipin prior to loading with Ag-LTF and characterized for their physical and swelling properties, rheology, polymer and actives interactions, and in vitro release of the actives. The hydrogel's anti-biofilm and antibacterial performances against S. aureus and P. aeruginosa as well as their cytotoxicity effects were assessed in vitro, including primary wound healing gene expression of human dermal fibroblasts (HDFs). The formulated hydrogels showed adequate release of AgNPs and LTF, with promising antimicrobial effects against both bacterial strains. The Ag-LTF-loaded hydrogel did not significantly interfere with the normal cellular functions as no alteration was detected for cell viability, migration rate, and expression of the target genes, suggesting the nontoxicity of Ag-LTF as well as the hydrogels. In conclusion, Ag-LTF-loaded genipin-cross-linked gelatin hydrogel was successfully synthesized as a new approach for fighting biofilms in infected wounds, which may be applied to accelerate healing of chronic wounds.
    Matched MeSH terms: Silver/chemistry
  7. Gonzalez-Carter DA, Leo BF, Ruenraroengsak P, Chen S, Goode AE, Theodorou IG, et al.
    Sci Rep, 2017 03 02;7:42871.
    PMID: 28251989 DOI: 10.1038/srep42871
    Silver nanoparticles (AgNP) are known to penetrate into the brain and cause neuronal death. However, there is a paucity in studies examining the effect of AgNP on the resident immune cells of the brain, microglia. Given microglia are implicated in neurodegenerative disorders such as Parkinson's disease (PD), it is important to examine how AgNPs affect microglial inflammation to fully assess AgNP neurotoxicity. In addition, understanding AgNP processing by microglia will allow better prediction of their long term bioreactivity. In the present study, the in vitro uptake and intracellular transformation of citrate-capped AgNPs by microglia, as well as their effects on microglial inflammation and related neurotoxicity were examined. Analytical microscopy demonstrated internalization and dissolution of AgNPs within microglia and formation of non-reactive silver sulphide (Ag2S) on the surface of AgNPs. Furthermore, AgNP-treatment up-regulated microglial expression of the hydrogen sulphide (H2S)-synthesizing enzyme cystathionine-γ-lyase (CSE). In addition, AgNPs showed significant anti-inflammatory effects, reducing lipopolysaccharide (LPS)-stimulated ROS, nitric oxide and TNFα production, which translated into reduced microglial toxicity towards dopaminergic neurons. Hence, the present results indicate that intracellular Ag2S formation, resulting from CSE-mediated H2S production in microglia, sequesters Ag+ ions released from AgNPs, significantly limiting their toxicity, concomitantly reducing microglial inflammation and related neurotoxicity.
    Matched MeSH terms: Silver/chemistry
  8. Azizi S, Ahmad MB, Hussein MZ, Ibrahim NA, Namvar F
    Int J Nanomedicine, 2014;9:1909-17.
    PMID: 24790433 DOI: 10.2147/IJN.S60274
    A series of novel bionanocomposites were cast using different contents of zinc oxide-silver nanoparticles (ZnO-AgNPs) stabilized by cellulose nanocrystals (CNC) as multifunctional nanosized fillers in poly(vinyl alcohol)/chitosan (PVA/Cs) matrices. The morphological structure, mechanical properties, ultraviolet-visible absorption, and antimicrobial properties of the prepared films were investigated as a function of their CNC/ZnO-AgNP content and compared with PVA/chitosan/CNC bionanocomposite films. X-ray diffraction and field emission scanning electron microscopic analyses showed that the CNC/ZnO-AgNPs were homogeneously dispersed in the PVA/Cs matrix and the crystallinity increased with increasing nanosized filler content. Compared with pure PVA/Cs, the tensile strength and modulus in the films increased from 0.055 to 0.205 GPa and from 0.395 to 1.20 GPa, respectively. Ultraviolet and visible light can be efficiently absorbed by incorporating ZnO-AgNPs into a PVA/Cs matrix, suggesting that these bionanocomposite films show good visibility and ultraviolet-shielding effects. The bionanocomposite films had excellent antimicrobial properties, killing both Gram-negative Salmonella choleraesuis and Gram-positive Staphylococcus aureus. The enhanced physical properties achieved by incorporating CNC/ZnO-AgNPs could be beneficial in various applications.
    Matched MeSH terms: Silver/chemistry
  9. Prasad TNVKV, Adam S, Visweswara Rao P, Ravindra Reddy B, Giridhara Krishna T
    IET Nanobiotechnol, 2017 Apr;11(3):277-285.
    PMID: 28476985 DOI: 10.1049/iet-nbt.2015.0122
    Advancement in materials synthesis largely depends up on their diverse applications and commercialisation. Antifungal effects of phytogenic silver nanoparticles (AgNPs) were evident, but the reports on the effects of the same on agricultural crops are scant. Herein, we report for the first time, size dependent effects of phytogenic AgNPs (synthesised using Stevia rebaudiana leaf extract) on the germination, growth and biochemical parameters of three important agricultural crops viz., rice (Oryza sativa L), maize (Zea mays L) and peanut (Arachis hypogaea L). AgNPs with varied sizes were prepared by changing the concentration and quantity of the Stevia rebaudiana leaf extract. As prepared AgNPs were characterized using the techniques, such as high-resolution transmission electron microscopy, particle size and zeta potential analyser. The measured (dynamic light scattering technique) average sizes of particles are ranging from 68.5 to 116 nm. Fourier transform infrared studies confirmed the participation of alcohols, aldehydes and amides in the reduction and stabilisation of the AgNPs. Application of these AgNPs to three agricultural crop seeds (rice, maize and peanut) resulted in size dependent effects on their germination, growth and biochemical parameters such as, chlorophyll content, carotenoid and protein content. Further, antifungal activity of AgNPs also evaluated against fungi, Aspergillus niger.
    Matched MeSH terms: Silver/chemistry
  10. Farea M, Masudi S, Wan Bakar WZ
    Aust Endod J, 2010 Aug;36(2):48-53.
    PMID: 20666748 DOI: 10.1111/j.1747-4477.2009.00187.x
    The aim of this study was to evaluate in vitro the apical sealing ability of cold lateral and system B root filling techniques using dye penetration. Eighty-six extracted single-rooted human teeth were prepared and randomly divided into two experimental groups to be obturated by cold lateral condensation (n = 33) and system B (n = 33). The remaining 20 teeth served as positive and negative controls. The roots were embedded for 72 h in methylene blue dye solution and sectioned transversely for dye penetration evaluation using stereomicroscope. The results of this study showed that cold lateral condensation leaked significantly more (P < 0.001) than system B technique.
    Matched MeSH terms: Silver/chemistry
  11. Ikram M, Hayat S, Imran M, Haider A, Naz S, Ul-Hamid A, et al.
    Carbohydr Polym, 2021 Oct 01;269:118346.
    PMID: 34294353 DOI: 10.1016/j.carbpol.2021.118346
    In the present study, the novel Ag/cellulose nanocrystal (CNC)-doped CeO2 quantum dots (QDs) with highly efficient catalytic performance were synthesized using one pot co-precipitation technique, which were then applied in the degradation of methylene blue and ciprofloxacin (MBCF) in wastewater. Catalytic activity against MBCF dye was significantly reduced (99.3%) for (4%) Ag dopant concentration in acidic medium. For Ag/CNC-doped CeO2 vast inhibition domain of G-ve was significantly confirmed as (5.25-11.70 mm) and (7.15-13.60 mm), while medium- to high-concentration of CNC levels were calculated for G + ve (0.95 nm, 1.65 mm), respectively. Overall, (4%) Ag/CNC-doped CeO2 revealed significant antimicrobial activity against G-ve relative to G + ve at both concentrations, respectively. Furthermore, in silico molecular docking studies were performed against selected enzyme targets dihydrofolate reductase (DHFR), dihydropteroate synthase (DHPS), and DNA gyrase belonging to folate and nucleic acid biosynthetic pathway, respectively to rationalize possible mechanism behind bactericidal potential of CNC-CeO2 and Ag/CNC-CeO2.
    Matched MeSH terms: Silver/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links