Displaying publications 141 - 160 of 221 in total

Abstract:
Sort:
  1. El-Sayed ZA, Abramova I, Aldave JC, Al-Herz W, Bezrodnik L, Boukari R, et al.
    World Allergy Organ J, 2019;12(3):100018.
    PMID: 30937141 DOI: 10.1016/j.waojou.2019.100018
    Background: X-linked agammaglobulinemia is an inherited immunodeficiency recognized since 1952. In spite of seven decades of experience, there is still a limited understanding of regional differences in presentation and complications. This study was designed by the Primary Immunodeficiencies Committee of the World Allergy Organization to better understand regional needs, challenges and unique patient features.

    Methods: A survey instrument was designed by the Primary Immunodeficiencies Committee of the World Allergy Organization to collect both structured and semi-structured data on X-linked agammaglobulinemia. The survey was sent to 54 centers around the world chosen on the basis of World Allergy Organization participation and/or registration in the European Society for Immunodeficiencies. There were 40 centers that responded, comprising 32 countries.

    Results: This study reports on 783 patients from 40 centers around the world. Problems with diagnosis are highlighted by the reported delays in diagnosis>24 months in 34% of patients and the lack of genetic studies in 39% of centers Two infections exhibited regional variation. Vaccine-associated paralytic poliomyelitis was seen only in countries with live polio vaccination and two centers reported mycobacteria. High rates of morbidity were reported. Acute and chronic lung diseases accounted for 41% of the deaths. Unusual complications such as inflammatory bowel disease and large granular lymphocyte disease, among others were specifically enumerated, and while individually uncommon, they were collectively seen in 20.3% of patients. These data suggest that a broad range of both inflammatory, infectious, and autoimmune conditions can occur in patients. The breadth of complications and lack of data on management subsequently appeared as a significant challenge reported by centers. Survival above 20 years of age was lowest in Africa (22%) and reached above 70% in Australia, Europe and the Americas. Centers were asked to report their challenges and responses (n = 116) emphasized the difficulties in access to immunoglobulin products (16%) and reflected the ongoing need for education of both patients and referring physicians.

    Conclusions: This is the largest study of patients with X-linked agammaglobulinemia and emphasizes the continued morbidity and mortality of XLA despite progress in diagnosis and treatment. It presents a world view of the successes and challenges for patients and physicians alike. A pivotal finding is the need for education of physicians regarding typical symptoms suggesting a possible diagnosis of X-linked agammaglobulinemia and sharing of best practices for the less common complications.

  2. Lee WC, Russell B, Sobota RM, Ghaffar K, Howland SW, Wong ZX, et al.
    Elife, 2020 Feb 18;9.
    PMID: 32066522 DOI: 10.7554/eLife.51546
    In malaria, rosetting is described as a phenomenon where an infected erythrocyte (IRBC) is attached to uninfected erythrocytes (URBC). In some studies, rosetting has been associated with malaria pathogenesis. Here, we have identified a new type of rosetting. Using a step-by-step approach, we identified IGFBP7, a protein secreted by monocytes in response to parasite stimulation, as a rosette-stimulator for Plasmodium falciparum- and P. vivax-IRBC. IGFBP7-mediated rosette-stimulation was rapid yet reversible. Unlike type I rosetting that involves direct interaction of rosetting ligands on IRBC and receptors on URBC, the IGFBP7-mediated, type II rosetting requires two additional serum factors, namely von Willebrand factor and thrombospondin-1. These two factors interact with IGFBP7 to mediate rosette formation by the IRBC. Importantly, the IGFBP7-induced type II rosetting hampers phagocytosis of IRBC by host phagocytes.
  3. Mohd Fadil NF, Tengku-Idris TIN, Shahari S, Fong MY, Lau YL
    Iran J Parasitol, 2020 2 27;14(4):623-630.
    PMID: 32099565
    Background: The genus Sarcocystis consists of intracellular coccidian protozoan parasites with the ability to invade muscle tissue and mature into sarcocysts, causing the zoonotic disease sarcocystosis. These parasites have an obligatory two-host life cycle, which correlates with prey-predator relationship. The distribution and prevalence of Sarcocystis in reptiles remains unclear, despite several previous reports. The aim of this study was to identify the genetic assemblage of the species of Sarcocystis infecting Malaysian snakes and lizards by screening stool samples.

    Methods: Overall, 54 fecal samples of various snake species and four fecal samples of several lizard species in Malaysia were taken within the course of August 2015 to January 2016 from Seremban, Melaka, Tioman Island, Pahang, Klang and Langkawi Wildlife Park located in Malaysia. The samples were examined for Sarcocystis through PCR amplification of the 18S rDNA sequence at the Department of Parasitology, University of Malaya.

    Results: Fourteen snake fecal samples were positive via PCR; however, only eight samples (14%) were found positive for Sarcocystis species, whereas four were positive for other genera and the identity of another three samples was unable to be determined. Further phylogenetic analysis of the 18S rDNA sequences revealed that the snakes were infected with either S. singaporensis, S. lacertae, or undefined Sarcocystis species closely related to either S. singaporensis or S. zuoi. Sarcocystis nesbitti infection was not identified in any of the infected snakes.

    Conclusion: This is the first report of identification of S. lacertae in the black-headed cat snake.

  4. Tan W, Liew JWK, Selvarajoo S, Lim XY, Foo CJ, Refai WF, et al.
    Acta Trop, 2020 Apr;204:105330.
    PMID: 31917959 DOI: 10.1016/j.actatropica.2020.105330
    The public health burden of dengue is most likely under reported. Current dengue control measures only considered symptomatic dengue transmission. Hence, there is a paucity of information on the epidemiology of inapparent dengue. This study reports that many people have been unknowingly exposed to dengue infection. Almost 10% and 70% of individuals without any history of dengue infection and living in a dengue hotspot, in Selangor, Malaysia, were dengue IgM and IgG positive respectively. When dengue-positive mosquitoes were detected in the hotspot, 11 (6.3%) of the 174 individuals tested were found to have dengue viremia, of which 10 were asymptomatic. Besides, upon detection of a dengue-infected mosquito, transmission was already widespread. In a clinical setting, it appears that people living with dengue patients have been exposed to dengue, whether asymptomatic or symptomatic. They can either have circulating viral RNA and/or presence of NS1 antigen. It is also possible that they are dengue seropositive. Collectively, the results indicate that actions taken to control dengue transmission after the first report of dengue cases may be already too late. The current study also revealed challenges in diagnosing clinically inapparent dengue in hyperendemic settings. There is no one best method for diagnosing inapparent dengue. This study demonstrates empirical evidence of inapparent dengue in different settings. Early dengue surveillance in the mosquito population and active serological/virological surveillance in humans can go hand in hand. More studies are required to investigate the epidemiology, seroprevalence, diagnostics, and control of inapparent dengue. It is also crucial to educate the public, health staff and medical professionals on asymptomatic dengue and to propagate awareness, which is important for controlling transmission.
  5. Liew CC, Lau YL, Fong MY, Cheong FW
    Am J Trop Med Hyg, 2020 05;102(5):1068-1071.
    PMID: 32189613 DOI: 10.4269/ajtmh.19-0836
    Invasion of human erythrocytes by merozoites of Plasmodium knowlesi involves interaction between the P. knowlesi Duffy binding protein alpha region II (PkDBPαII) and Duffy antigen receptor for chemokines (DARCs) on the erythrocytes. Information is scarce on the binding level of PkDBPαII to different Duffy antigens, Fya and Fyb. This study aims to measure the binding level of two genetically distinct PkDBPαII haplotypes to Fy(a+b-) and Fy(a+b+) human erythrocytes using erythrocyte-binding assay. The binding level of PkDBPαII of Peninsular Malaysian and Malaysian Borneon haplotypes to erythrocytes was determined by counting the number of rosettes formed in the assay. Overall, the Peninsular Malaysian haplotype displayed higher binding activity than the Malaysian Borneon haplotype. Both haplotypes exhibit the same preference to Fy(a+b+) compared with Fy(a+b-), hence justifying the vital role of Fyb in the binding to PkDBPαII. Further studies are needed to investigate the P. knowlesi susceptibility on individuals with different Duffy blood groups.
  6. Lai MY, Lau YL
    Acta Trop, 2020 May 15;208:105511.
    PMID: 32422380 DOI: 10.1016/j.actatropica.2020.105511
    In this study, recombinase polymerase amplification (RPA) combined with SYBR Green I was developed for the detection of Plasmodium knowlesi. Positive samples were indicated with a green color while negative samples were orange. To increase the efficiency of amplification, an interval mixing step of samples after 3 to 6 min incubation was recommended. Different sets of reaction volumes from 6.25 to 50 µL were tested and the results indicated no differences in detection. RPA's combination with SYBR Green I is fast and easy to perform, hence this method is suitable for use in resource-limited settings.
  7. Lai MY, Ooi CH, Jaimin JJ, Lau YL
    Am J Trop Med Hyg, 2020 06;102(6):1370-1372.
    PMID: 32228783 DOI: 10.4269/ajtmh.20-0001
    The incidence of zoonotic malaria, Plasmodium knowlesi, infection is increasing and now is the major cause of malaria in Malaysia. Here, we describe a WarmStart colorimetric loop-mediated isothermal amplification (LAMP) assay for the detection of Plasmodium spp. The detection limit for this assay was 10 copies/µL for P knowlesi and Plasmodium ovale and 1 copy/µL for Plasmodium falciparum, Plasmodium vivax, and Plasmodium malariae. To test clinical sensitivity and specificity, 100 microscopy-positive and 20 malaria-negative samples were used. The WarmStart colorimetric LAMP was 98% sensitive and 100% specific. Amplification products were visible for direct observation, thereby eliminating the need for post-amplification processing steps. Therefore, WarmStart colorimetric LAMP is suitable for use in resource-limited settings.
  8. Cheong FW, Dzul S, Fong MY, Lau YL, Ponnampalavanar S
    Acta Trop, 2020 Jun;206:105454.
    PMID: 32205132 DOI: 10.1016/j.actatropica.2020.105454
    Transmission of Plasmodium vivax still persist in Malaysia despite the government's aim to eliminate malaria in 2020. High treatment failure rate of chloroquine monotherapy was reported recently. Hence, parasite drug susceptibility should be kept under close monitoring. Mutation analysis of the drug resistance markers is useful for reconnaissance of anti-malarial drug resistance. Hitherto, information on P. vivax drug resistance marker in Malaysia are limited. This study aims to evaluate the mutations in four P. vivax drug resistance markers pvcrt-o (putative), pvmdr1 (putative), pvdhfr and pvdhps in 44 isolates from Malaysia. Finding indicates that 27.3%, 100%, 47.7%, and 27.3% of the isolates were carrying mutant allele in pvcrt-o, pvmdr1, pvdhfr and pvdhps genes, respectively. Most of the mutant isolates had multiple point mutations rather than single point mutation in pvmdr1 (41/44) and pvdhfr (19/21). One novel point mutation V111I was detected in pvdhfr. Allelic combination analysis shows significant strong association between mutations in pvcrt-o and pvmdr1 (X2 = 9.521, P < 0.05). In the present study, 65.9% of the patients are non-Malaysians, with few of them arrived in Malaysia 1-2 weeks before the onset of clinical manifestations, or had previous history of malaria infection. Besides, few Malaysian patients had travel history to vivax-endemic countries, suggesting that these patients might have acquired the infections during their travel. All these possible imported cases could have placed Malaysia in a risk to have local transmission or outbreak of malaria. Six isolates were found to have mutations in all four drug resistance markers, suggesting that the multiple-drugs resistant P. vivax strains are circulating in Malaysia.
  9. Muh F, Kim N, Nyunt MH, Firdaus ER, Han JH, Hoque MR, et al.
    PLoS Negl Trop Dis, 2020 06;14(6):e0008323.
    PMID: 32559186 DOI: 10.1371/journal.pntd.0008323
    Malaria is caused by multiple different species of protozoan parasites, and interventions in the pre-elimination phase can lead to drastic changes in the proportion of each species causing malaria. In endemic areas, cross-reactivity may play an important role in the protection and blocking transmission. Thus, successful control of one species could lead to an increase in other parasite species. A few studies have reported cross-reactivity producing cross-immunity, but the extent of cross-reactive, particularly between closely related species, is poorly understood. P. vivax and P. knowlesi are particularly closely related species causing malaria infections in SE Asia, and whilst P. vivax cases are in decline, zoonotic P. knowlesi infections are rising in some areas. In this study, the cross-species reactivity and growth inhibition activity of P. vivax blood-stage antigen-specific antibodies against P. knowlesi parasites were investigated. Bioinformatics analysis, immunofluorescence assay, western blotting, protein microarray, and growth inhibition assay were performed to investigate the cross-reactivity. P. vivax blood-stage antigen-specific antibodies recognized the molecules located on the surface or released from apical organelles of P. knowlesi merozoites. Recombinant P. vivax and P. knowlesi proteins were also recognized by P. knowlesi- and P. vivax-infected patient antibodies, respectively. Immunoglobulin G against P. vivax antigens from both immune animals and human malaria patients inhibited the erythrocyte invasion by P. knowlesi. This study demonstrates that there is extensive cross-reactivity between antibodies against P. vivax to P. knowlesi in the blood stage, and these antibodies can potently inhibit in vitro invasion, highlighting the potential cross-protective immunity in endemic areas.
  10. De Silva JR, Ching XT, Lau YL
    Trop Biomed, 2020 Jun 01;37(2):324-332.
    PMID: 33612802
    The focus of the current study was to disrupt the Toxo 5699 gene via CRISPR/Cas9 to evaluate the effects of gene disruption on the parasite lytic cycle. In the present work, a single plasmid expressing both the guide RNA and Cas9 nuclease together with a selectable marker of human dihydrofolate reductase (DHFR) was introduced into Toxoplasma gondii. Targeted disruption of the Toxo 5699 gene was carried out via the CRISPR/Cas9 system and confirmed by PCR, sequencing, and immunofluorescence microscopy. Disrupted and nondisrupted control parasites were allowed to invade HS27 cell monolayers and plaques were counted. The average number of plaques from three replicates per group was obtained between the disrupted and non-disrupted T. gondii RH strain and was compared using a onetailed t-test. It was observed that there was a significant decrease in number and size of plaque formation in the Toxo 5699 gene disrupted parasite line. This is an indication that the Toxo 5699 gene may play a role in the lytic cycle of the parasite, particularly during the replication phase and thus would be a novel target for disruption or silencing. The Toxo 5699 gene presented in the current work is an important part of the T. gondii lytic cycle, therefore meriting further inquiry into its potential as a target for further genetic-silencing or disruption studies.
  11. Mahendran P, Liew JWK, Amir A, Ching XT, Lau YL
    Malar J, 2020 Jul 10;19(1):241.
    PMID: 32650774 DOI: 10.1186/s12936-020-03314-5
    BACKGROUND: Plasmodium knowlesi and Plasmodium vivax are the predominant Plasmodium species that cause malaria in Malaysia and play a role in asymptomatic malaria disease transmission in Malaysia. The diagnostic tools available to diagnose malaria, such as microscopy and rapid diagnostic test (RDT), are less sensitive at detecting lower parasite density. Droplet digital polymerase chain reaction (ddPCR), which has been shown to have higher sensitivity at diagnosing malaria, allows direct quantification without the need for a standard curve. The aim of this study is to develop and use a duplex ddPCR assay for the detection of P. knowlesi and P. vivax, and compare this method to nested PCR and qPCR.

    METHODS: The concordance rate, sensitivity and specificity of the duplex ddPCR assay were determined and compared to nested PCR and duplex qPCR.

    RESULTS: The duplex ddPCR assay had higher analytical sensitivity (P. vivax = 10 copies/µL and P. knowlesi = 0.01 copies/µL) compared to qPCR (P. vivax = 100 copies/µL and P. knowlesi = 10 copies/µL). Moreover, the ddPCR assay had acceptable clinical sensitivity (P. vivax = 80% and P. knowlesi = 90%) and clinical specificity (P. vivax = 87.84% and P. knowlesi = 81.08%) when compared to nested PCR. Both ddPCR and qPCR detected more double infections in the samples.

    CONCLUSIONS: Overall, the ddPCR assay demonstrated acceptable efficiency in detection of P. knowlesi and P. vivax, and was more sensitive than nested PCR in detecting mixed infections. However, the duplex ddPCR assay still needs optimization to improve the assay's clinical sensitivity and specificity.

  12. Rouhani-Rankouhi SZ, Kow KS, Liam CK, Lau YL
    Trop Biomed, 2020 Sep 01;37(3):599-608.
    PMID: 33612775 DOI: 10.47665/tb.37.3.599
    This cross-sectional study involving 86 adult asthmatic patients aimed to determine the relationship between Toxocara seropositivity and severity of asthma in adult asthmatics and investigate the risk factors for Toxocara infection. In all cases, T. canis IgG level was measured using an anti-Toxocara IgG enzyme-linked immunosorbent assay kit. Total serum IgE and eosinophil count were also determined. The anti-Toxocara IgG seropositivity was 68.6% among asthmatic patients. There were no statistically significant associations between Toxocara seroprevalence and other risk factors, clinical symptoms of asthma and high level of total serum IgE and eosinophilia. Pet ownership could be an important risk factor for Toxocariasis. Having a pet at home and wheezing were significantly associated with Toxocara seropositivity in adult asthmatic patients.
  13. Noordin NR, Lee PY, Mohd Bukhari FD, Fong MY, Abdul Hamid MH, Jelip J, et al.
    Am J Trop Med Hyg, 2020 09;103(3):1107-1110.
    PMID: 32618263 DOI: 10.4269/ajtmh.20-0268
    Asymptomatic and/or low-density malaria infection has been acknowledged as an obstacle to achieving a malaria-free country. This study aimed to determine the prevalence of asymptomatic and/or low-density malaria infection in previously reported malarious localities using nested PCR in four states, namely, Johor, Pahang, Kelantan, and Selangor, between June 2019 and January 2020. Blood samples (n = 585) were collected and were extracted using a QIAamp blood kit. The DNA was concentrated and subjected to nested PCR. Thin and thick blood smears were examined as well. Of the 585 samples collected, 19 were positive: 10 for Plasmodium knowlesi, eight for Plasmodium vivax, and one for Plasmodium ovale. Asymptomatic and/or low-density malaria infection is a threat to malaria elimination initiatives. Eliminating countries should develop guidance policy on the importance of low-density malaria infection which includes detection and treatment policy.
  14. Mat Salleh NH, Rahman MFA, Samsusah S, De Silva JR, Ng DC, Ghozali AH, et al.
    Trans R Soc Trop Med Hyg, 2020 Sep 01;114(9):700-703.
    PMID: 32511702 DOI: 10.1093/trstmh/traa042
    Five children in Pos Lenjang, Pahang, Malaysia were PCR-positive for vivax malaria and were admitted to the hospital from 5 to 26 July 2019. One of the patients experienced three episodes of recurrence of vivax malaria. Microsatellite analysis showed that reinfection is unlikely. Drug resistance analysis indicated that Riamet (artemether-lumefantrine) is effective. Cytochrome P450 2D6 (CYP2D6) testing showed that this patient has defective CYP2D6 function. Primaquine failure to clear the Plasmodium vivax hypnozoites may be the cause of recurring infections in this patient. This report highlights the need for the development of liver-stage curative antimalarials that do not require metabolism by the CYP2D6 enzyme.
  15. Amir A, Shahari S, Liew JWK, de Silva JR, Khan MB, Lai MY, et al.
    Acta Trop, 2020 Nov;211:105596.
    PMID: 32589995 DOI: 10.1016/j.actatropica.2020.105596
    Zoonotic cases of Plasmodium knowlesi account for most malaria cases in Malaysia, and humans infected with P. cynomolgi, another parasite of macaques have recently been reported in Sarawak. To date the epidemiology of malaria in its natural Macaca reservoir hosts remains little investigated. In this study we surveyed the prevalence of simian malaria in wild macaques of three states in Peninsular Malaysia, namely Pahang, Perak and Johor using blood samples from 103 wild macaques (collected by the Department of Wildlife and National Parks Peninsular Malaysia) subjected to microscopic examination and nested PCR targeting the Plasmodium small subunit ribosomal RNA gene. As expected, PCR analysis yielded significantly higher prevalence (64/103) as compared to microscopic examination (27/103). No relationship between the age and/or sex of the macaques with the parasitaemia and the Plasmodium species infecting the macaques could be identified. Wild macaques in Pahang had the highest prevalence of Plasmodium parasites (89.7%), followed by those of Perak (69.2%) and Johor (28.9%). Plasmodium inui and P. cynomolgi were the two most prevalent species infecting the macaques from all three states. Half of the macaques (33/64) harboured two or more Plasmodium species. These data provide a baseline survey, which should be extended by further longitudinal investigations that should be associated with studies on the bionomics of the anopheline vectors. This information will allow an accurate evaluation of the risk of zoonotic transmission to humans, and to elaborate effective strategies to control simian malaria.
  16. Lau YL, Ismail IB, Izati Binti Mustapa N, Lai MY, Tuan Soh TS, Hassan AH, et al.
    Am J Trop Med Hyg, 2020 Dec;103(6):2350-2352.
    PMID: 33098286 DOI: 10.4269/ajtmh.20-1079
    A simple and rapid reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed for the detection of SARS-CoV-2. The RT-LAMP assay was highly specific for SARS-CoV-2 and was able to detect one copy of transcribed SARS-CoV-2 RNA within 24 minutes. Assay validation performed using 50 positive and 32 negative clinical samples showed 100% sensitivity and specificity. The RT-LAMP would be valuable for clinical diagnosis and epidemiological surveillance of SARS-CoV-2 infection in resource-limited areas as it does not require the use of sophisticated and costly equipment.
  17. Zen LPY, Lai MY, Lau YL
    Trop Biomed, 2020 Dec 01;37(4):1124-1128.
    PMID: 33612764 DOI: 10.47665/tb.37.4.1124
    The LAMP assay, amplifies the target DNA rapidly, with 10-fold greater sensitivity than conventional PCR. The greater sensitivity also comes with greater risks of contamination. To overcome this issue, the current project includes either uracil DNA glycosylase (UDG) or a mineral oil overlay in the LAMP assay. Our results indicated that UDG or a mineral oil overlay can effectively prevent carryover contamination in the LAMP assay for the detection of human malaria. By incorporating these preventative methods, contamination can be eliminated and LAMP can potentially be used in the field; and point of care diagnosis for human malaria.
  18. Phang WK, Hamid MHA, Jelip J, Mudin RN, Chuang TW, Lau YL, et al.
    PMID: 33322414 DOI: 10.3390/ijerph17249271
    The life-threatening zoonotic malaria cases caused by Plasmodium knowlesi in Malaysia has recently been reported to be the highest among all malaria cases; however, previous studies have mainly focused on the transmission of P. knowlesi in Malaysian Borneo (East Malaysia). This study aimed to describe the transmission patterns of P. knowlesi infection in Peninsular Malaysia (West Malaysia). The spatial distribution of P. knowlesi was mapped across Peninsular Malaysia using Geographic Information System techniques. Local indicators of spatial associations were used to evaluate spatial patterns of P. knowlesi incidence. Seasonal autoregressive integrated moving average models were utilized to analyze the monthly incidence of knowlesi malaria in the hotspot region from 2012 to 2017 and to forecast subsequent incidence in 2018. Spatial analysis revealed that hotspots were clustered in the central-northern region of Peninsular Malaysia. Time series analysis revealed the strong seasonality of transmission from January to March. This study provides fundamental information on the spatial distribution and temporal dynamic of P. knowlesi in Peninsular Malaysia from 2011 to 2018. Current control policy should consider different strategies to prevent the transmission of both human and zoonotic malaria, particularly in the hotspot region, to ensure a successful elimination of malaria in the future.
  19. Mohd Bukhari FD, Lau YL, Fong MY
    Am J Trop Med Hyg, 2020 Dec 14.
    PMID: 33319732 DOI: 10.4269/ajtmh.20-0797
    Invasion of Plasmodium knowlesi merozoite into human erythrocytes involves molecular interaction between the parasite's Duffy binding protein (PkDBPαII) and the Duffy antigen receptor for chemokines on the erythrocytes. This study investigates the binding activity of human erythrocyte with PkDBPαII of P. knowlesi isolates from high and low parasitemic patients in an erythrocyte binding assay. The binding activity was determined by counting the number and measuring the size of rosettes formed in the assay. The protein PkDBPαII of P. knowlesi isolated from low parasitemia cases produced significantly higher number of rosettes with human erythrocytes than high parasitemia case isolates (65.5 ± 12.9 and 17.2 ± 5.5, respectively). Interestingly, PkDBPαII of isolates from high parasitemia cases formed significantly larger rosettes with human erythrocytes than PkDBPαII of isolates from low parasitemia cases (18,000 ± 13,000 µm2 and 1,315 ± 623 µm2, respectively).
  20. Meyts I, Bousfiha A, Duff C, Singh S, Lau YL, Condino-Neto A, et al.
    Front Immunol, 2020;11:625753.
    PMID: 33679719 DOI: 10.3389/fimmu.2020.625753
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links