Displaying publications 141 - 160 of 414 in total

Abstract:
Sort:
  1. Kumar G, Saratale RG, Kadier A, Sivagurunathan P, Zhen G, Kim SH, et al.
    Chemosphere, 2017 Jun;177:84-92.
    PMID: 28284119 DOI: 10.1016/j.chemosphere.2017.02.135
    Bio-electrochemical systems (BESs) are the microbial systems which are employed to produce electricity directly from organic wastes along with some valuable chemicals production such as medium chain fatty acids; acetate, butyrate and alcohols. In this review, recent updates about value-added chemicals production concomitantly with the production of gaseous fuels like hydrogen and methane which are considered as cleaner for the environment have been addressed. Additionally, the bottlenecks associated with the conversion rates, lower yields and other aspects have been mentioned. In spite of its infant stage development, this would be the future trend of energy, biochemicals and electricity production in greener and cleaner pathway with the win-win situation of organic waste remediation. Henceforth, this review intends to summarise and foster the progress made in the BESs and discusses its challenges and outlook on future research advances.
  2. Logroño W, Pérez M, Urquizo G, Kadier A, Echeverría M, Recalde C, et al.
    Chemosphere, 2017 Mar 01;176:378-388.
    PMID: 28278426 DOI: 10.1016/j.chemosphere.2017.02.099
    An air exposed single-chamber microbial fuel cell (SCMFC) using microalgal biocathodes was designed. The reactors were tested for the simultaneous biodegradation of real dye textile wastewater (RTW) and the generation of bioelectricity. The results of digital image processing revealed a maximum coverage area on the biocathodes by microalgal cells of 42%. The atmospheric and diffused CO2 could enable good algal growth and its immobilized operation on the cathode electrode. The biocathode-SCMFCs outperformed an open circuit voltage (OCV), which was 18%-43% higher than the control. Furthermore, the maximum volumetric power density achieved was 123.2 ± 27.5 mW m(-3). The system was suitable for the treatment of RTW and the removal/decrease of COD, colour and heavy metals. High removal efficiencies were observed in the SCMFCs for Zn (98%) and COD (92-98%), but the removal efficiencies were considerably lower for Cr (54-80%). We observed that this single chamber MFC simplifies a double chamber system. The bioelectrochemical performance was relatively low, but the treatment capacity of the system seems encouraging in contrast to previous studies. A proof-of-concept experiment demonstrated that the microalgal biocathode could operate in air exposed conditions, seems to be a promising alternative to a Pt cathode and is an efficient and cost-effective approach to improve the performance of single chamber MFCs.
  3. Sulaiman C, Abdul-Rahim AS, Chin L, Mohd-Shahwahid HO
    Chemosphere, 2017 Mar 06;177:224-231.
    PMID: 28292722 DOI: 10.1016/j.chemosphere.2017.03.019
    This study examined the impact of wood fuel consumption on health outcomes, specifically under-five and adult mortality in Sub-Saharan Africa, where wood usage for cooking and heating is on the increase. Generalized method of moment (GMM) estimators were used to estimate the impact of wood fuel consumption on under-five and adult mortality (and also male and female mortality) in the region. The findings revealed that wood fuel consumption had significant positive impact on under-five and adult mortality. It suggests that over the studied period, an increase in wood fuel consumption has increased the mortality of under-five and adult. Importantly, it indicated that the magnitude of the effect of wood fuel consumption was more on the under-five than the adults. Similarly, assessing the effect on a gender basis, it was revealed that the effect was more on female than male adults. This finding suggests that the resultant mortality from wood smoke related infections is more on under-five children than adults, and also are more on female adults than male adults. We, therefore, recommended that an alternative affordable, clean energy source for cooking and heating should be provided to reduce the wood fuel consumption.
  4. Adeleke AO, Latiff AAA, Al-Gheethi AA, Daud Z
    Chemosphere, 2017 May;174:232-242.
    PMID: 28171839 DOI: 10.1016/j.chemosphere.2017.01.110
    The present work aimed to develop a novel composite material made up of activated cow bone powder (CBP) as a starting material for reducing chemical oxygen demand (COD) and ammonia-nitrogen (NH3N) from palm oil mill effluent (POME). The optimization of the reduction efficiency was investigated using response surface methodology (RSM). Six independent variables used in the optimization experiments include pH (4-10), speed (0.27-9.66 rcf), contact time (2-24 h), particle size (1-4.35 mm), dilution factor (100-500) and adsorbent dosage (65-125 g/L). The chemical functional groups were determined using Fourier transform irradiation (FTIR). The elemental composition were detected using SEM-EDX, while thermal decomposition was investigated using thermo gravimetric analysis (TGA) in order to determine the effects of carbonization temperature on the adsorbent. The results revealed that the optimal reduction of COD and NH3N from raw POME was observed at pH 10, 50 rpm, within 2 h and 3 mm of particle size as well as at dilution factor of 500 and 125 g L-1 of adsorbent dosage, the observed and predicted reduction were 89.60 vs. 85.01 and 75.61 vs. 74.04%, respectively for COD and NH3N. The main functional groups in the adsorbent were OH, NH, CO, CC, COC, COH, and CH. The SEM-EDX analysis revealed that the CBP-composite has a smooth surface with high contents of carbon. The activated CBP has very stable temperature profile with no significant weight loss (9.85%). In conclusion, the CBP-composite investigated here has characteristics high potential for the remediation of COD and NH3N from raw POME.
  5. Saratale RG, Saratale GD, Pugazhendhi A, Zhen G, Kumar G, Kadier A, et al.
    Chemosphere, 2017 Mar 09;177:176-188.
    PMID: 28288426 DOI: 10.1016/j.chemosphere.2017.02.143
    Microbial electrochemical systems (MESs) are an attracting technology for the disposal of wastewater treatment and simultaneous energy production. In MESs, at the anode microorganisms through the catalytic activity generates electrons that can be converted into electricity or other valuable chemical compounds. Microorganisms those having ability to donate and accept electrons to and from anode and cathode electrodes, respectively are recognized as 'exoelectrogens'. In the MESs, it renders an important function for its performance. In the present mini-review, we have discussed the role of microbiome including pure culture, enriched culture and mixed culture in different BESs application. The effects of operational and biological factors on microbiome development have been discussed. Further discussion about the molecular techniques for the evaluation of microbial community analysis is addressed. In addition different electrochemical techniques for extracellular electron transfer (EET) mechanism of electroactive biofilms have been discussed. This review highlights the importance of microbiome in the development of MESs, effective operational factors for exo-electrogens activities as well their key challenges and future technological aspects are also briefly discussed.
  6. Debabrata P, Sivakumar M
    Chemosphere, 2018 Aug;204:101-108.
    PMID: 29655102 DOI: 10.1016/j.chemosphere.2018.04.014
    Dicofol, an extensively used organochlorine pesticide and a recommended Stockholm convention persistent organic pollutant (POP) candidate is well known for its endocrine disruptive properties. The sonochemical degradation of Dicofol in aqueous media has been investigated using a 20-kHz probe type sonicator with power inputs from 150 to 450 W. The degradation rate was determined as a function of concentration of Dicofol, solution pH, bulk phase temperature, ultrasonic power density and H2O2 addition. At optimum operating conditions, the pseudo-first-order degradation rate constant (k) was determined to be 0.032 min-1 and the extent of degradation was found to be 86% within 60 min of ultrasound treatment. High performance liquid chromatography (HPLC) and Gas chromatography coupled with mass spectroscopy (GC-MS) analysis indicated the presence of degraded products. The obtained results of Dicofol degradation and control experiments in the presence of H2O2 and radical scavenger test suggest thermal decomposition along with radical attack at bubble-vapor interface to be the dominant degradation pathway. Sonochemical treatment is effective and promising for successful removal of harmful pesticides such as Dicofol and superior removal efficiency for other POPs is expected in the near future with the successful implementation of ultrasound-based wastewater treatment.
  7. Sherlala AIA, Raman AAA, Bello MM, Asghar A
    Chemosphere, 2018 Feb;193:1004-1017.
    PMID: 29874727 DOI: 10.1016/j.chemosphere.2017.11.093
    Graphene-based adsorbents have attracted wide interests as effective adsorbents for heavy metals removal from the environment. Due to their excellent electrical, mechanical, optical and transport properties, graphene and its derivatives such as graphene oxide (GO) have found various applications. However, in many applications, surface modification is necessary as pristine graphene/GO may be ineffective in some specific applications such as adsorption of heavy metal ions. Consequently, the modification of graphene/GO using various metals and non-metals is an ongoing research effort in the carbon-material realm. The use of organic materials represents an economical and environmentally friendly approach in modifying GO for environmental applications such as heavy metal adsorption. This review discusses the applications of organo-functionalized GO composites for the adsorption of heavy metals. The aspects reviewed include the commonly used organic materials for modifying GO, the performance of the modified composites in heavy metals adsorption, effects of operational parameters, adsorption mechanisms and kinetic, as well as the stability of the adsorbents. Despite the significant research efforts on GO modification, many aspects such as the interaction between the functional groups and the heavy metal ions, and the quantitative effect of the functional groups are yet to be fully understood. The review, therefore, offers some perspectives on the future research needs.
  8. Alias NH, Jaafar J, Samitsu S, Yusof N, Othman MHD, Rahman MA, et al.
    Chemosphere, 2018 Aug;204:79-86.
    PMID: 29653325 DOI: 10.1016/j.chemosphere.2018.04.033
    Separation and purification of oilfield produced water (OPW) is a major environmental challenge due to the co-production of the OPW during petroleum exploration and production operations. Effective capture of oil contaminant and its in-situ photodegradation is one of the promising methods to purify the OPW. Based on the photocatalytic capability of graphitic carbon nitride (GCN) which was recently rediscovered, photodegradation capability of GCN for OPW was investigated in this study. GCN was synthesized by calcination of urea and further exfoliated into nanosheets. The GCNs were incorporated into polyacrylonitrile nanofibers using electrospinning, which gave a liquid-permeable self-supporting photocatalytic nanofiber mat that can be handled by hand. The photocatalytic nanofiber demonstrated 85.4% degradation of OPW under visible light irradiation, and improved the degradation to 96.6% under UV light. Effective photodegradation of the photocatalytic nanofiber for OPW originates from synergetic effects of oil adsorption by PAN nanofibers and oil photodegradation by GCNs. This study provides an insight for industrial application on purification of OPW through photocatalytic degradation under solar irradiation.
  9. Khalik WF, Ho LN, Ong SA, Voon CH, Wong YS, Yusuf SY, et al.
    Chemosphere, 2018 Jul;202:467-475.
    PMID: 29579681 DOI: 10.1016/j.chemosphere.2018.03.113
    The role of azo dye Reactive Black 5 (RB5) as an electron donor and/or electron acceptor could be distinguished in dual chamber of photocatalytic fuel cell (PFC). The introduction of RB5 in anode chamber increased the voltage generation in the system since degradation of RB5 might produce electrons which also would transfer through external circuit to the cathode chamber. The removal efficiency of RB5 with open and closed circuit was 8.5% and 13.6%, respectively and removal efficiency for open circuit was low due to the fact that recombination of electron-hole pairs might happen in anode chamber since without connection to the cathode, electron cannot be transferred. The degradation of RB5 in cathode chamber with absence of oxygen showed that electrons from anode chamber was accepted by dye molecules to break its azo bond. The presence of oxygen in cathode chamber would improve the oxygen reduction rate which occurred at Platinum-loaded carbon (Pt/C) cathode electrode. The Voc, Jsc and Pmax for different condition of ultrapure water at cathode chamber also affected their fill factor. The transportation of protons to cathode chamber through Nafion membrane could decrease the pH of ultrapure water in cathode chamber and undergo hydrogen evolution reaction in the absence of oxygen which then increased degradation rate of RB5 as well as its electricity generation.
  10. Quraishi KS, Bustam MA, Krishnan S, Aminuddin NF, Azeezah N, Ghani NA, et al.
    Chemosphere, 2017 Oct;184:642-651.
    PMID: 28624742 DOI: 10.1016/j.chemosphere.2017.06.037
    A promising method of Carbon dioxide (CO2) valorization is to use green microalgae photosynthesis to process biofuel. Two Phase Partitioning Bioreactors (TPPBR) offer the possibility to use non-aqueous phase liquids (NAPL) to enhance CO2 solubility; thus making CO2 available to maximize algae growth. This requires relatively less toxic hydrophobic Ionic Liquids (ILs) that comprise a new class of ionic compounds with remarkable physicochemical properties and thus qualifies them as NAPL candidates. This paper concerns the synthesis of ILs with octyl and butyl chains as well as different cations containing aromatic (imidazolium, pyridinium) and non-aromatic (piperidinum, pyrrolidinium) rings for CO2 absorption studies. The authors measured their respective toxicity levels on microalgae species, specifically, Scenedesmus quadricauda, Chlorella vulgaris and Botryococcus braunii. Results revealed that octyl-based ILs were more toxic than butyl-based analogues. Such was the case for bmim-PF6 at double saturation with an absorbance of 0.11, compared to Omim-PF6 at 0.17, bmim-NTf2 at 0.02, and Omim-NTf2 at 0.14, respectively. CO2 uptake results for ILs bearing octyl-based chains compared to the butyl analog were 54% (nCO2/nIL) (i.e., moles of CO2 moles of IL) and 38% (nCO2/nIL), respectively. Conclusively, 1-butyl-1-methylpiperidinium absorbed 13% (nCO2/nIL) and appeared the least toxic, having an absorbance of 0.25 at 688 nm (double saturation at 7 d) compared to 1-butyl-3-methylimidazolium, which showed the highest toxicity with zero absorbance. Accordingly, these findings suggest that 1-butyl-1-methylpiperidinium is capable of transporting CO2 to a system containing green microalgae without causing significant harm; thus allowing its use in TPPBR technology.
  11. Khan AM, Behkami S, Yusoff I, Md Zain SB, Bakar NKA, Bakar AFA, et al.
    Chemosphere, 2017 Oct;184:673-678.
    PMID: 28628904 DOI: 10.1016/j.chemosphere.2017.06.032
    Rare earth elements (REEs) are becoming significant due to their huge applications in many industries, large-scale mining and refining activities. Increasing usage of such metals pose negative environmental impacts. In this research ICP-MS has been used to analyze soil samples collected from former ex-mining areas in the depths of 0-20 cm, 21-40 cm, and 41-60 cm of residential, mining, natural, and industrial areas of Perak. Principal component analysis (PCA) revealed that soil samples taken from different mining, industrial, residential, and natural areas are separated into four clusters. It was observed that REEs were abundant in most of the samples from mining areas. Concentration of the rare elements decrease in general as we move from surface soil to deeper soils.
  12. Mohtor NH, Othman MHD, Bakar SA, Kurniawan TA, Dzinun H, Norddin MNAM, et al.
    Chemosphere, 2018 Oct;208:595-605.
    PMID: 29890498 DOI: 10.1016/j.chemosphere.2018.05.159
    Hydrothermal method has been proven to be an effective method to synthesise the nanostructured titanium dioxide (TiO2) with good morphology and uniform distribution at low temperature. Despite of employing a well-known and commonly used glass substrate as the support to hydrothermally synthesise the nanostructured TiO2, this study emphasised on the application of kaolin hollow fibre membrane as the support for the fabrication of kaolin/TiO2 nanorods (TNR) membrane. By varying the hydrothermal reaction times (2 h, 6 h, and 10 h), the different morphology, distribution, and properties of TiO2 nanorods on kaolin support were observed by field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), atomic force microscope (AFM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). It was found that the well-dispersed of TiO2 nanorods have improved the surface affinity of kaolin/TNR membrane towards water, allowing kaolin/TNR membrane prepared from 10 h of hydrothermal reaction to exhibit the highest water permeation of 165 L/h.m2.bar. In addition, this prepared membrane also showed the highest photocatalytic activity of 80.3% in the decolourisation of reactive black 5 (RB5) under UV irradiation. On top of that, the kaolin/TNR membrane prepared from 10 h of hydrothermal reaction also exhibited a good resistance towards photocorrosion, enabling the reuse of this membrane for three consecutive cycles of photocatalytic degradation of RB5 without showing significant reduction in photocatalytic efficiency towards the decolourisation of RB5.
  13. Asaduzzaman K, Khandaker MU, Binti Baharudin NA, Amin YBM, Farook MS, Bradley DA, et al.
    Chemosphere, 2017 Jun;176:221-230.
    PMID: 28273529 DOI: 10.1016/j.chemosphere.2017.02.114
    With rapid urbanization and large-scale industrial activities, modern human populations are being increasingly subjected to chronic environmental heavy metal exposures. Elemental uptake in tooth dentine is a bioindicator, the uptake occurring during the formation and mineralization processes, stored to large extent over periods of many years. The uptake includes essential elements, most typically geogenic dietary sources, as well as non-essential elements arising through environmental insults. In this study, with the help of the Dental Faculty of the University of Malaya, a total of 50 separate human teeth were collected from dental patients of various ethnicity, age, gender, occupation, dietary habit, residency, etc. Analysis was conducted using inductively coupled plasma-mass spectrometry (ICP-MS), most samples indicating the presence of the following trace elements, placed in order of concentration, from least to greatest: As, Mn, Ba, Cu, Cr, Pb, Zn, Hg, Sb, Al, Sr, Sn. The concentrations have been observed to increase with age. Among the ethnic groups, the teeth of ethnic Chinese showed marginally greater metal concentrations than those of the Indians and Malays, the teeth dentine of females generally showing greater concentrations than that of males. Greater concentrations of Hg, Cu and Sn were found in molars while Pb, Sr, Sb and Zn were present in greater concentrations in incisors. With the elevated concentration levels of heavy metals in tooth dentine reflecting pollution from industrial emissions and urbanization, it is evident that human tooth dentine can provide chronological information on exposure, representing a reliable bio-indicator of environmental pollution.
  14. Nordin N, Ho LN, Ong SA, Ibrahim AH, Lee SL, Ong YP
    Chemosphere, 2019 Jan;214:614-622.
    PMID: 30292044 DOI: 10.1016/j.chemosphere.2018.09.144
    The hybrid system of photocatalytic fuel cell - peroxi-coagulation (PFC-PC) is a sustainable and green technology to degrade organic pollutants and generate electricity simultaneously. In this study, three different types of photocatalysts: TiO2, ZnO and α-Fe2O3 were immobilized respectively on carbon cloth (CC), and applied as photoanodes in the photocatalytic fuel cell of this hybrid system. Photocatalytic fuel cell was employed to drive a peroxi-coagulation process by generating the external voltage accompanying with degrading organic pollutants under UV light irradiation. The degradation efficiency of Amaranth dye and power output in the hybrid system of PFC-PC were evaluated by applying different photoanode materials fabricated in this study. In addition, the effect of light on the photocurrent of three different photoanode materials was investigated. In the absence of light, the reduction of photocurrent percentage was found to be 69.7%, 17.3% and 93.2% in TiO2/CC, ZnO/CC and α-Fe2O3/CC photoanodes, respectively. A maximum power density (1.17 mWcm-2) and degradation of dye (93.8%) at PFC reactor were achieved by using ZnO/CC as photoanode. However, the different photoanode materials at PFC showed insignificant difference in dye degradation trend in the PC reactor. Meanwhile, the degradation trend of Amaranth at PFC reactor was influenced by the recombination rate, electron mobility and band gap energy of photocatalyst among different photoanode materials.
  15. Yien Fang T, Praveena SM, Aris AZ, Syed Ismail SN, Rasdi I
    Chemosphere, 2019 Jan;215:153-162.
    PMID: 30316157 DOI: 10.1016/j.chemosphere.2018.10.032
    Steroid estrogens, such as 17β-estradiol (E2) and 17α-ethynylestradiol (EE2) are potent and were categorized as "Watch List" in Directive 2013/39/EU because of their potential risks to aquatic environment. Commercialized enzyme-linked immunosorbent assay (ELISA) kits have been used to quantify steroid estrogens in wastewater samples due to their simplicity, rapid, cost-effectiveness, and validated assays. Hence, this study aims to determine the occurrence and removal of steroid hormones in Malaysian wastewater treatment plants (WWTPs) by ELISA, to identify the association of removal efficiency (E2 and EE2) with respect to WWTPs operating conditions, and to assess the potential risks of steroid estrogens to aquatic environment and human. Results showed E2 concentration ranged from 88.2 ± 7.0 ng/L to 93.9 ± 6.9 ng/L in influent and 35.1 ± 17.3 ng/L to 85.2 ± 7.6 ng/L in effluent, with removal of 6.4%-63.0%. The EE2 concentration ranged from 0.2 ± 0.2 ng/L to 4.9 ± 6.3 ng/L in influent and 0.02 ± 0.03 ng/L to 1.0 ± 0.8 ng/L in effluent, with removal of 28.3-99.3%. There is a correlation between EE2 removal with total suspended solid (TSS) and oxidation reduction potential (ORP), and was statistically significant. Despite the calculated estrogenic activity for E2 and EE2 was relatively high, dilution effects could lower estrogenic response to aquatic environment. Besides, these six selected WWTPs have cumulative RQ values below the allowable limit, except WWTP 1. Relatively high precipitation (129-218 mm) could further dilute estrogens concentration in the receiving river. These outputs can be used as quantitative information for evaluating the occurrence and removal of steroid estrogens in Malaysian WWTPs.
  16. Ranjbar Jafarabadi A, Riyahi Bakhtiari A, Yaghoobi Z, Kong Yap C, Maisano M, Cappello T
    Chemosphere, 2019 Jan;215:835-845.
    PMID: 30359953 DOI: 10.1016/j.chemosphere.2018.10.092
    This is the first report on bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) and their derivatives (oxygen, nitrogen, sulfur, hydroxyl, carbonyl and methyl-containing PAHs) in three edible marine fishes, namely Lutjanus argentimaculatus, Lethrinus microdon and Scomberomorus guttatus, from Kharg Island, Persian Gulf, Iran. The concentrations (ng g-1dw) of Σ39PAHs resulted significantly higher in fish liver than muscle, with the PAH composition pattern dominated by low molecular weight compounds (naphthalene, alkyl-naphthalenes and phenanthrene). The highest mean concentrations of ∑9 oxygenated and ∑15 hydroxylated PAHs (ng g-1dw) were found ound in L. microdon and L. argentimaculatus, respectively, while the lowest values in S. guttatus. Additionally, the highest mean concentrations of Σ5 carbonylic PAHs (ng g-1dw) were found in L. argentimaculatus, followed by L. microdon. The PAHs levels and distribution in fish liver and muscle were dependent on both the Kow of PAHs congeners and fish lipid contents. Overall, the present findings provide important baseline data for further research on the ecotoxicity of PAHs in aquatic organisms, and consequent implications for human health.
  17. Xing SC, Chen JY, Lv N, Mi JD, Chen WL, Liang JB, et al.
    Chemosphere, 2018 Nov;211:804-816.
    PMID: 30099165 DOI: 10.1016/j.chemosphere.2018.08.005
    The lead (Pb2+) bioaccumulation capacities and mechanisms of three different physiological structures (vegetative cells, decay cells and spores) of B. coagulans R11 isolated from a lead mine were examined in this study. The results showed that the total Pb2+ removal capacity of vegetative cells (17.53 mg/g) was at its optimal and higher than those of the spores and decay cells at the initial lead concentration of 50 mg/L. However, when the initial lead concentration surpassed 50 mg/L, Pb2+ removal capacity of decay cells was more efficient. Zeta potential, Fourier transform infrared (FTIR) and functional group modification analyses demonstrated that the electrostatic attraction and chelating activity of the functional groups were the primary pathways involved in the extracellular accumulation of Pb2+ by the vegetative cells and spores. However, the primary Pb2+ binding pathway in the decay cells was hypothesized to be due to physical adsorption, which easily led to Pb2+ desorption. Based on these results, we conclude that the vegetative cell is the ideal lead sorbent. Therefore, it is important to inhibit the transformation of the vegetative cells into decay cells and spores, which can be achieved by culturing the bacteria under anaerobic conditions to prevent spore formation. Heat stimulation can effectively enhance spore germination to generate vegetative cells.
  18. Lee SL, Ho LN, Ong SA, Wong YS, Voon CH, Khalik WF, et al.
    Chemosphere, 2018 Oct;209:935-943.
    PMID: 30114743 DOI: 10.1016/j.chemosphere.2018.06.157
    Reactive green 19, acid orange 7 and methylene blue are employed as the organic pollutants in this work. A photocatalytic fuel cell is constructed based on the idea of immobilizing zinc oxide onto zinc photoanode and platinum loaded carbon cathode, both evaluated under sunlight and ultraviolet irradiation, respectively. Influence of light and dye structures on the performance of photocatalytic fuel cell are examined. With reactive green 19, 93% and 86% of color removal are achieved after 8 h of photocatalytic fuel cell treatment under sunlight and ultraviolet irradiation, respectively. The decolorization rate of diazo reactive green 19 is higher than acid orange 7 (monoazo dye) when both dyes are treated by photocatalytic fuel cell under sunlight and ultraviolet irradiation, as the electron releasing groups (-NH-triazine) allow reactive green 19 easier to be oxidized. Comparatively, acid orange 7 is less favorable to be oxidized. The degradation of methylene blue is enhanced under sunlight irradiation due to the occurrence of self-sensitized photodegradation. When methylene blue is employed in the photocatalytic fuel cell under sunlight irradiation, the short circuit current (0.0129 mA cm-2) and maximum power density (0.0032 mW cm-2) of photocatalytic fuel cell greatly improved.
  19. Jahan S, Alias YB, Bakar AFBA, Yusoff IB
    Chemosphere, 2019 Feb;217:213-222.
    PMID: 30415119 DOI: 10.1016/j.chemosphere.2018.11.015
    Carbon based materials are emerging as a sustainable alternative to their metal-oxide counterparts. However, their transport behavior under natural aqueous environment is poorly understood. This study investigated the transport and retention profiles of carbon nanoparticles (CNPs) and graphene oxide quantum dots (GOQDs) through column experiments in saturated porous media. CNPs and GOQDs (30 mg/L) were dispersed in natural river water (RW) and passed through the column at a flow rate of 1 mL/min, which mimicking the natural water flow rate. After every 10 min, the column effluents were collected and the mass recovery and retention profiles were monitored. Results indicated that the transport of both carbonaceous colloids was predominantly controlled by surface potential and ionic composition of natural water. The CNPs with its high surface potential (-40 mV) exhibited more column transport and was less susceptible to solution pH (5.6-6.8) variation as compared to GOQDs (-24 mV). The results showed that, monovalent salt (NaCl) was one of the dominating factors for the retention and transport of carbonaceous colloids compared to divalent salt (CaCl2). Furthermore, the presence of natural organic matter (NOM) increased the transport of both carbonaceous colloids and thereby decreases the tendency for column retention.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links