Displaying publications 141 - 160 of 302 in total

Abstract:
Sort:
  1. Mohamad Shalan NA, Mustapha NM, Mohamed S
    Food Chem, 2016 Dec 01;212:443-52.
    PMID: 27374554 DOI: 10.1016/j.foodchem.2016.05.179
    Morinda citrifolia fruit, (noni), enhanced performances in athletes and post-menopausal women in clinical studies. This report shows the edible noni leaves water extract enhances performance in a weight-loaded swimming animal model better than the fruit or standardized green tea extract. The 4weeks study showed the extract (containing scopoletin and epicatechin) progressively prolonged the time to exhaustion by threefold longer than the control, fruit or tea extract. The extract improved (i) the mammalian antioxidant responses (MDA, GSH and SOD2 levels), (ii) tissue nutrient (glucose) and metabolite (lactate) management, (iii) stress hormone (cortisol) regulation; (iv) neurotransmitter (dopamine, noradrenaline, serotonin) expressions, transporter or receptor levels, (v) anti-inflammatory (IL4 & IL10) responses; (v) skeletal muscle angiogenesis (VEGFA) and (v) energy and mitochondrial biogenesis (via PGC, UCP3, NRF2, AMPK, MAPK1, and CAMK4). The ergogenic extract helped delay fatigue by enhancing energy production, regulation and efficiency, which suggests benefits for physical activities and disease recovery.
  2. Mehrnoush A, Tan CP, Hamed M, Aziz NA, Ling TC
    Food Chem, 2011 Sep 1;128(1):158-64.
    PMID: 25214343 DOI: 10.1016/j.foodchem.2011.03.012
    This study investigated the possible relationship between the encapsulation variables, namely serine protease content (9-50mg/ml, X1), Arabic gum (0.2-10%(w/w), X2), maltodextrin (2-5%(w/w), X3) and calcium chloride (1.3-5.5%(w/w), X4) on the enzymatic properties of encapsulated serine protease. The study demonstrated that Arabic gum, maltodextrin and calcium chloride, as coating agents, protected serine protease from activity loss during freeze-drying. The overall optimum region resulted in a suitable freeze drying condition with a yield of 92% for the encapsulated serine protease, were obtained using 29.5mg/ml serine protease content, 5.1%(w/w) Arabic gum, 3.5%(w/w) maltodextrin and 3.4%(w/w) calcium chloride. It was found that the interaction effect of Arabic gum and calcium chloride improved the serine protease activity, and Arabic gum was the most effective amongst the examined coating agents. Thus, Arabic gum should be considered as potential protection in freeze drying of serine protease.
  3. Maulidiani, Rudiyanto, Abas F, Ismail IS, Lajis NH
    Food Chem, 2018 Jun 01;250:37-45.
    PMID: 29412925 DOI: 10.1016/j.foodchem.2018.01.023
    Optimization process is an important aspect in the natural product extractions. Herein, an alternative approach is proposed for the optimization in extraction, namely, the Generalized Likelihood Uncertainty Estimation (GLUE). The approach combines the Latin hypercube sampling, the feasible range of independent variables, the Monte Carlo simulation, and the threshold criteria of response variables. The GLUE method is tested in three different techniques including the ultrasound, the microwave, and the supercritical CO2 assisted extractions utilizing the data from previously published reports. The study found that this method can: provide more information on the combined effects of the independent variables on the response variables in the dotty plots; deal with unlimited number of independent and response variables; consider combined multiple threshold criteria, which is subjective depending on the target of the investigation for response variables; and provide a range of values with their distribution for the optimization.
  4. Mat Yusoff M, Gordon MH, Ezeh O, Niranjan K
    Food Chem, 2016 Nov 15;211:400-8.
    PMID: 27283648 DOI: 10.1016/j.foodchem.2016.05.050
    This paper reports on the extraction of Moringa oleifera (MO) oil by using aqueous enzymatic extraction (AEE) method. The effect of different process parameters on the oil recovery was discovered by using statistical optimization, besides the effect of selected parameters on the formation of its oil-in-water cream emulsions. Within the pre-determined ranges, the use of pH 4.5, moisture/kernel ratio of 8:1 (w/w), and 300stroke/min shaking speed at 40°C for 1h incubation time resulted in highest oil recovery of approximately 70% (goil/g solvent-extracted oil). These optimized parameters also result in a very thin emulsion layer, indicating minute amount of emulsion formed. Zero oil recovery with thick emulsion were observed when the used aqueous phase was re-utilized for another AEE process. The findings suggest that the critical selection of AEE parameters is key to high oil recovery with minimum emulsion formation thereby lowering the load on the de-emulsification step.
  5. Manaharan T, Ming CH, Palanisamy UD
    Food Chem, 2013 Jan 15;136(2):354-63.
    PMID: 23122070 DOI: 10.1016/j.foodchem.2012.08.056
    The insulin-like and/or insulin-sensitising effects of Syzygium aqueum leaf extract and its six bioactive compounds; 4-hydroxybenzaldehyde, myricetin-3-O-rhamnoside, europetin-3-O-rhamnoside, phloretin, myrigalone-G and myrigalone-B were investigated in 3T3-L1 adipocytes. We observed that, S. aqueum leaf extract (0.04-5 μg/ml) and its six bioactive compounds (0.08-10 μM) at non-cytotoxic concentrations were effectively enhance adipogenesis, stimulate glucose uptake and increase adiponectin secretion in 3T3-L1 adipocytes. Clearly, the compounds myricetin-3-O-rhamnoside and europetin-3-O-rhamnoside showed insulin-like and insulin-sensitising effects on adipocytes from a concentration of 0.08 μM. These compounds were far better than rosiglitazone and the other isolated compounds in enhancing adipogenesis, stimulating 2-NBDG uptake and increasing adiponectin secretion at all the concentrations tested. These suggest the antidiabetic potential of S. aqueum leaf extract and its six bioactive compounds. However, further molecular interaction studies to explain the mechanisms of action are highly warranted.
  6. Mahmud AH, Salahuddin NM, Md Jani AM, Abu Bakar NF, Zainal Abidin SAS, Mohd Zain Z, et al.
    Food Chem, 2023 Jun 15;411:135493.
    PMID: 36689871 DOI: 10.1016/j.foodchem.2023.135493
    A voltammetric immunosensor was developed for detection of porcine serum albumin (PSA) to identify raw meat products adulterated with pork. A novel strategy to fabricate multiple individual nanoporous alumina (NPA) millirods (length, 5.0 mm; diameter, 1.0 mm) as the biorecognition platform is described. Each NPA millirod was covalently bioconjugated with anti-PSA capturing antibodies (α-PSAC). Following immunocapture, the PSA bound to the α-PSAC/NPA millirod bioconjugate were tagged with gold nanoparticles (AuNPs) functionalized with anti-PSA detection antibodies as the signaling probe. Subsequently, the AuNPs were voltammetrically analyzed to quantify the target PSA. The immunosensor exhibited 100 % specificity and high sensitivity to PSA with a limit of detection (LoD) of 50 (range, 0-1000) pg/mL (R2 = 0.9907). Real-world applicability was successfully validated using pork/beef adulterated mixtures with a LoD of 0.05 % (w/w). Overall, the detection performance of the proposed immunosensor was excellent and, thus, is suitable for surveillance of food safety and quality.
  7. Low KL, Idris A, Mohd Yusof N
    Food Chem, 2020 Mar 01;307:125631.
    PMID: 31634761 DOI: 10.1016/j.foodchem.2019.125631
    Lutein available in the current market is derived from marigold petals. However, extensive studies showed that microalgae are rich in lutein content and potentially exploitable for its dietary and other industrial applications. In this study, microwave assisted binary phase solvent extraction method (MABS) was the novel protocol being developed and optimized to achieve maximum lutein recovery from microalgae Scenedesmus sp. biomass. Results showed that 60% potassium hydroxide solution with acetone in the ratio of 0.1 (ml/ml) was the ideal binary phase solvent composition. Empirical model developed using response surface methodology revealed highest lutein content can be recovered through MABS extraction method at 55 °C treatment temperature, 36 min in extraction time, 0.7 (mg/ml) for biomass to solvent ratio, 250 Watt microwave power and 250 rpm stirring speed. This optimized novel protocol had increased the amount of lutein recovered by 130% and shorten the overall extraction time by 3-folds.
  8. Low KH, Zain SM, Abas MR, Md Salleh K, Teo YY
    Food Chem, 2015 Jun 15;177:390-6.
    PMID: 25660902 DOI: 10.1016/j.foodchem.2015.01.059
    The trace metal concentrations in edible muscle of red tilapia (Oreochromis spp.) sampled from a former tin mining pool, concrete tank and earthen pond in Jelebu were analysed with microwave assisted digestion-inductively coupled plasma-mass spectrometry. Results were compared with established legal limits and the daily ingestion exposures simulated using the Monte Carlo algorithm for potential health risks. Among the metals investigated, arsenic was found to be the key contaminant, which may have arisen from the use of formulated feeding pellets. Although the risks of toxicity associated with consumption of red tilapia from the sites investigated were found to be within the tolerable range, the preliminary probabilistic estimation of As cancer risk shows that the 95th percentile risk level surpassed the benchmark level of 10(-5). In general, the probabilistic health risks associated with ingestion of red tilapia can be ranked as follows: former tin mining pool > concrete tank > earthen pond.
  9. Lou J, Wu C, Wang H, Cao S, Wei Y, Chen Y, et al.
    Food Chem, 2023 May 15;408:135185.
    PMID: 36525725 DOI: 10.1016/j.foodchem.2022.135185
    The effect of melatonin treatment on the carotenoid metabolism in broccoli florets during storage was explored. The results indicated that 100 µmol/L of melatonin maintained the sensory quality of broccoli florets, which retarded the increase of the L* value and the decrease of the H value. Melatonin treatment increased the activities of tryptophan decarboxylase (TDC), tryptamine 5-hydroxylase (T5H), serotonin N-acetyltransferase (SNAT) and N-acetylserotonin methyltransferase (ASMT), leading to the enrichment of endogenous melatonin content in broccoli florets. Meanwhile, the treatment inhibited the concentrations of β-carotene, β-cryptoxanthin, zeaxanthin and lutein, which was beneficial in delaying the yellowing of broccoli. In addition, a series of carotenoid biosynthetic genes such as BoPSY, BoPDS, BoZDS, BoLCYβ and BoZEP was also suppressed by melatonin. Further analysis revealed that the lower carotenoid content and the down-regulated BoNCED expression in treated broccoli resulted in less accumulation of abscisic acid precursors, inhibiting abscisic acid production during the yellowing process.
  10. Loi CC, Boo HC, Mohammed AS, Ariffin AA
    Food Chem, 2011 Sep 1;128(1):223-6.
    PMID: 25214353 DOI: 10.1016/j.foodchem.2010.12.108
    A modified steam distillation method was developed to extract furfural from crude palm oil (CPO). The collected distillates were analysed using high performance liquid chromatography (HPLC) coupled with an ultraviolet diode detector at 284nm. The HPLC method allowed identification and quantification of furfural in CPO. The unique thermal extraction of CPO whereby the fresh fruit bunches (FFB) are first subjected to steam treatment, distinguishes itself from other solvent-extracted or cold-pressed vegetable oils. The presence of furfural was also determined in the fresh palm oil from FFB (without undergoing the normal extraction process), palm olein, palm stearin, olive oil, coconut oil, sunflower oil, soya oil and corn oil. The chromatograms of the extracts were compared to that of standard furfural. Furfural was only detected in CPO. The CPO consignments obtained from four mills were shown to contain 7.54 to 20.60mg/kg furfural.
  11. Liu Y, Lee WJ, Tan CP, Lai OM, Wang Y, Qiu C
    Food Chem, 2022 Mar 15;372:131305.
    PMID: 34653777 DOI: 10.1016/j.foodchem.2021.131305
    High internal phase emulsions (HIPEs) show promising application in food and cosmetic industries. In this work, diacylglycerol (DAG) was applied to fabricate water-in-oil (W/O) HIPEs. DAG-based emulsion can hold 60% water and the emulsion rigidity increased with water content, indicating the water droplets acted as "active fillers". Stable HIPE with 80% water fraction was formed through the combination of 6 wt% DAG with 1 wt% polyglycerol polyricinoleate (PGPR). The addition of 1 w% kappa (κ)-carrageenan and 0.5 M NaCl greatly reduced the droplet size and enhanced emulsion rigidity, and the interfacial tension of the internal phase was reduced. Benefiting from the Pickering crystals-stabilized interface by DAG as revealed by the microscopy and enhanced elastic modulus of emulsions with the gelation agents, the HIPEs demonstrated good retaining ability for anthocyanin and β-carotene. This study provides insights for the development of W/O HIPEs to fabricate low-calories margarines, spread or cosmetic creams.
  12. Liu Y, Kong KW, Wu DT, Liu HY, Li HB, Zhang JR, et al.
    Food Chem, 2022 Apr 16;374:131635.
    PMID: 34823934 DOI: 10.1016/j.foodchem.2021.131635
    The pomegranate peel is a by-product of pomegranate fruit rich in polyphenols. In this study, pomegranate peel polyphenols were explored using LC-MS/MS, and punicalagin was the most abundant compound. The highest yield (505.89 ± 1.73 mg/g DW) of punicalagin was obtained by ultrasonic-assisted extraction (UAE) with the ethanol concentration of 53%, sample-to-liquid ratio of 1:25 w/v, ultrasonic power of 757 W, and extraction time of 25 min. Punicalagin was further purified by the macroporous resin D101 and prep-HPLC, reaching the purity of 92.15%. The purified punicalagin had the IC50 of 82 ± 0.02 µg/mL against α-glucosidase, similar to the punicalagin standard with IC50 of 58 ± 0.014 µg/mL, both exhibiting a mixed inhibitory mechanism. Molecular docking further revealed that a steric hindrance with the intermolecular energy of -7.99 kcal/mol was formed between punicalagin and α-glucosidase. Overall, pomegranate peel is a promising source of punicalagin to develop anti-diabetic functional foods.
  13. Liu J, Chen J, Wang S, Xie J, Wang Y, Chai TT, et al.
    Food Chem, 2022 May 30;377:132000.
    PMID: 34999460 DOI: 10.1016/j.foodchem.2021.132000
    The aim of this study was to investigate the digestion and fermentation properties of fish protein fermented by Monascus. Semi-dried fish was fermented by applying Monascus purpureus Went M 3.439. Our results show that the Monascus fermentation of the fish protein enriched the free amino acids and achieved a relatively higher glutamate content than the control group. The Monascus treatment promoted the decomposition of the fish protein during in vitro digestion, reduced the ammonia and indole content and tended to increase the propionic acid content during in vitro fermentation. The Monascus treatment considerably changed the gut microbiota composition, and particularly increased the relative abundance of Parabacteroides in the in vitro fermentation model of human distal colon. Consumption of Monascus fermented fish protein could result in positive changes in fermentation metabolites and gut microbiota, which brings potential health benefits.
  14. Liu J, Zhu F, Yang J, Wang Y, Ma X, Lou Y, et al.
    Food Chem, 2023 Jun 15;411:135499.
    PMID: 36696717 DOI: 10.1016/j.foodchem.2023.135499
    Shrimp meat is prone to autolysis and decay due to the abundance of endogenous enzymes and contamination from microorganisms. HVEF freezing can slow the spoilage of shrimp, producing small and uniform ice crystals, resulting in less damage to muscle tissue. In this study, HVEF technique was used to freeze the shrimp (Solenocera melantho), and the UPLC-MS metabolic technique was used to investigate the metabolites of frozen shrimp meat. Compared with the control group, 367 differential metabolites were identified in the HVEF group. Mapping them to the KEGG database, there were 108 with KEGG ID. Purine metabolism and pyrimidine metabolism were the most enriched pathways. In addition, phosphatidylcholines (PCs), inosine (HxR), and l-valine were identified as potential biomarkers associated with lipid, nucleotide, and organic acid metabolism, respectively. Overall, HVEF can improve freezing quality of shrimp meat by slowing down the metabolism of substances in the muscle of S. melantho.
  15. Liu H, Guo X, Jiang K, Shi B, Liu L, Hou R, et al.
    Food Chem, 2024 Jul 15;446:138739.
    PMID: 38412807 DOI: 10.1016/j.foodchem.2024.138739
    Nowadays, due to the rise of fast-food consumption, the metabolic diseases are increasing as a result of high-sugar and high-fat diets. Therefore, there is an urgent need for natural, healthy and side-effect-free diets in daily life. Whole grain supplementation can enhance satiety and regulate energy metabolism, effects that have been attributed to polyphenol content. Dietary polyphenols interact with gut microbiota to produce intermediate metabolites that can regulate appetite while also enhancing prebiotic effects. This review considers how interactions between gut metabolites and dietary polyphenols might regulate appetite by acting on the gut-brain axis. In addition, further advances in the study of dietary polyphenols and gut microbial metabolites on energy metabolism and gut homeostasis are summarized. This review contributes to a better understanding of how dietary polyphenols regulate appetite via the gut-brain axis, thereby providing nutritional references for citizens' dietary preferences.
  16. Liu BL, Ooi CW, Ng IS, Show PL, Lin KJ, Chang YK
    Food Chem, 2020 Oct 15;327:127038.
    PMID: 32447136 DOI: 10.1016/j.foodchem.2020.127038
    Polyacrylonitrile nanofiber membrane functionalized with tris(hydroxymethyl)aminomethane (P-Tris) was used in affinity membrane chromatography for lysozyme adsorption. The effects of pH and protein concentration on lysozyme adsorption were investigated. Based on Langmuir model, the adsorption capacity of P-Tris nanofiber membrane was estimated to be 345.83 mg/g. For the operation of dynamic membrane chromatography with three-layer P-Tris nanofiber membranes, the optimal operating conditions were at pH 9, 1.0 mL/min of feed flow rate, and 2 mg/mL of feed concentration. Chicken egg white (CEW) was applied as the crude feedstock of lysozyme in the optimized dynamic membrane chromatography. The percent recovery and purification factor of lysozyme obtained from the chromatography were 93.28% and 103.98 folds, respectively. Our findings demonstrated the effectiveness of P-Tris affinity nanofiber membrane for the recovery of lysozyme from complex CEW solution.
  17. Ling AJW, Chang LS, Babji AS, Latip J, Koketsu M, Lim SJ
    Food Chem, 2022 Jan 15;367:130755.
    PMID: 34390910 DOI: 10.1016/j.foodchem.2021.130755
    Sialic acids are a group of nine-carbon α-keto acids. Sialic acid exists in more than 50 forms, with the natural types discovered as N-acetylneuraminic acid (Neu5Ac), deaminoneuraminic acid (2-keto-3-deoxy-nonulononic acid or Kdn), and N-glycolylneuraminic acid (Neu5Gc). Sialic acid level varies depending on the source, where edible bird's nest (EBN), predominantly Neu5Ac, is among the major sources of sialic acid. Due to its high nutritive value and complexity, sialic acid has been studied extensively through acid, aqueous, and enzymatic extraction. Although detection by chromatographic methods or mass spectrometry is common, the isolation and recovery work remained limited. Sialic acid is well-recognised for its bioactivities, including brain and cognition development, immune-enhancing, anti-hypertensive, anticancer, and skin whitening properties. Therefore, sialic acid can be used as a functional ingredient in the various industries. This paper reviews the current trend in the biochemistry, sources, extraction, and functions of sialic acids with special reference to EBN.
  18. Lim SJ, Wan Aida WM, Maskat MY, Latip J, Badri KH, Hassan O, et al.
    Food Chem, 2016 Oct 15;209:267-73.
    PMID: 27173562 DOI: 10.1016/j.foodchem.2016.04.058
    Fucoidan is a sulphated polysaccharide that consists mainly of fucose, normally found in brown seaweeds. In this study, fucoidan was extracted from Sargassum binderi (Fsar) from Malaysia and subsequently characterised. The chemical characteristics of Fsar were found to be different than those of commercial food grade fucoidan (Fysk) and those of previously studied fucoidans. NMR analysis proposed that the main structure of Fsar is →3)fuc-2-OSO3(-)(1→3)fuc(1→. The molecular weight (47.87kDa) and degree of sulphation (0.20) of Fsar were higher than those of Fysk, at 27.98kDa and 0.15, respectively. However, Fsar's polydispersity index (1.12) and fucose content (34.50%) were lower than those of Fysk, at 1.88 and 43.30%, respectively. Both Fsar and Fysk showed similar thermo-gravimetric properties with four mass losses, amorphous in nature and negative optical rotations. Results show that Fsar has fundamental characteristics of fucoidan with different structural conformation i.e. variation in glycosidic linkages and sulphate group orientation.
  19. Lim SJ, Wan Aida WM, Schiehser S, Rosenau T, Böhmdorfer S
    Food Chem, 2019 Jan 30;272:222-226.
    PMID: 30309536 DOI: 10.1016/j.foodchem.2018.08.034
    Fucoidan is a sulphated polysaccharide, made up mainly of l-fucose, which is found in brown seaweeds. Its chemical structure is diverse and depends on maturity, species and geographical location. The objective of this study was to elucidate the chemical structure of fucoidan from Cladosiphon okamuranus harvested in Japan. The fucoidan was subject to purification prior to monosaccharide profiling, sulphate content determination, and linkage analysis. Our results showed that Japanese Cladosiphon okamuranus fucoidan contained 70.13 ± 0.22 wt% fucose and 15.16 ± 1.17 wt% sulphate. Other minor monosaccharides found were d-xylose, d-galactose, d-mannose, d-glucose, d-arabinose, d-rhamnose and d-glucuronic acid. Linkage analysis revealed that fucopyranoside units along the backbone are linked, through α-1,3-glycosidic bonds, with fucose branching at C-2, and one sulphate group at C-4 per every three fucose units, i.e. the structure of fucoidan from Japanese Cladosiphon okamuranus is [→3)-α-fuc(1→]0.52[→3)-α-fuc-4-OSO3-(1→]0.33[→2)-α-fuc]0.14.
  20. Li Z, Ying Lee Y, Wang Y, Qiu C
    Food Chem, 2023 Nov 30;427:136696.
    PMID: 37392626 DOI: 10.1016/j.foodchem.2023.136696
    Diacylglycerols (DAG) of varying chain lengths were synthesized and the acyl migrated samples with different 1,3-DAG/1,2-DAG ratios were obtained. The crystallization profile and surface adsorption differed depending on DAG structure. C12 and C14 DAGs formed small platelet- and needle-like crystals at the oil-air interface which can better reduce surface tension and pack in an ordered lamellar structure in oil. The acyl migrated DAGs with higher ratios of 1,2-DAG showed reduced crystal size and lower oil-air interfacial activity. C14 and C12 DAG oleogels exhibited higher elasticity and whipping ability with crystal shells surrounding bubbles, whereas C16 and C18 DAG oleogels had low elasticity and limited whipping ability due to the formation of aggregated needle-like crystals and loose gel network. Thus, acyl chain length dramatically influences the gelation and foaming behaviors of DAGs whereas the isomers exert little influence. This study provides basis for applying DAG of different structures in food products.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links