Displaying publications 141 - 160 of 1520 in total

Abstract:
Sort:
  1. Loh SC, Othman AS, Veera Singham G
    Sci Rep, 2019 10 04;9(1):14296.
    PMID: 31586098 DOI: 10.1038/s41598-019-50800-1
    Hevea brasiliensis remains the primary crop commercially exploited to obtain latex, which is produced from the articulated secondary laticifer. Here, we described the transcriptional events related to jasmonic acid (JA)- and linolenic acid (LA)-induced secondary laticifer differentiation (SLD) in H. brasiliensis clone RRIM 600 based on RNA-seq approach. Histochemical approach proved that JA- and LA-treated samples resulted in SLD in H. brasiliensis when compared to ethephon and untreated control. RNA-seq data resulted in 86,614 unigenes, of which 2,664 genes were differentially expressed in JA and LA-induced secondary laticifer harvested from H. brasiliensis bark samples. Among these, 450 genes were unique to JA and LA as they were not differentially expressed in ethephon-treated samples compared with the untreated samples. Most transcription factors from the JA- and LA-specific dataset were classified under MYB, APETALA2/ethylene response factor (AP2/ERF), and basic-helix-loop-helix (bHLH) gene families that were involved in tissue developmental pathways, and we proposed that Bel5-GA2 oxidase 1-KNOTTED-like homeobox complex are likely involved in JA- and LA-induced SLD in H. brasiliensis. We also discovered alternative spliced transcripts, putative novel transcripts, and cis-natural antisense transcript pairs related to SLD event. This study has advanced understanding on the transcriptional regulatory network of SLD in H. brasiliensis.
  2. Soh LS, Veera Singham G
    Sci Rep, 2022 Mar 22;12(1):4919.
    PMID: 35318403 DOI: 10.1038/s41598-022-09015-0
    The use of insecticides remains important in managing pest insects. Over the years, many insects manifested physiological and behavioral modifications resulting in reduced efficacy of insecticides targeted against them. Emerging evidence suggests that bacterial symbionts could modulate susceptibility of host insects against insecticides. Here, we explore the influence of host microbiota in affecting the susceptibility of insect host against different insecticides in the blood-sucking bed bug, Cimex hemipterus. Rifampicin antibiotic treatment resulted in increased susceptibility to fenitrothion and imidacloprid, but not against deltamethrin. Meanwhile, the host fitness parameters measured in the present study were not significantly affected by rifampicin treatment, suggesting the role of bacterial symbionts influencing susceptibility against the insecticides. 16S metagenomics sequencing revealed a drastic shift in the composition of several bacterial taxa following rifampicin treatment. The highly abundant Alphaproteobacteria (Wolbachia > 90%) and Gammaproteobacteria (Yersinia > 6%) in control bed bugs were significantly suppressed and replaced by Actinobacteria, Bacilli, and Betaproteobacteria in the rifampicin treated F1 bed bugs, suggesting possibilities of Wolbachia mediating insecticide susceptibility in C. hemipterus. However, no significant changes in the total esterase, GST, and P450 activities were observed following rifampicin treatment, indicating yet unknown bacterial mechanisms explaining the observed phenomena. Re-inoculation of microbial content from control individuals regained the tolerance of rifampicin treated bed bugs to imidacloprid and fenitrothion. This study provides a foundation for a symbiont-mediated mechanism in influencing insecticide susceptibility that was previously unknown to bed bugs.
  3. Zaini MN, Patel SA, Syafruddin SE, Rodrigues P, Vanharanta S
    Sci Rep, 2018 08 13;8(1):12063.
    PMID: 30104738 DOI: 10.1038/s41598-018-30499-2
    Tissue-specific transcriptional programs control most biological phenotypes, including disease states such as cancer. However, the molecular details underlying transcriptional specificity is largely unknown, hindering the development of therapeutic approaches. Here, we describe novel experimental reporter systems that allow interrogation of the endogenous expression of HIF2A, a critical driver of renal oncogenesis. Using a focused CRISPR-Cas9 library targeting chromatin regulators, we provide evidence that these reporter systems are compatible with high-throughput screening. Our data also suggests redundancy in the control of cancer type-specific transcriptional traits. Reporter systems such as those described here could facilitate large-scale mechanistic dissection of transcriptional programmes underlying cancer phenotypes, thus paving the way for novel therapeutic approaches.
  4. Rahim HA, Abdulmalek M, Soh PJ, Rani KA, Hisham N, Vandenbosch GA
    Sci Rep, 2016 07 20;6:29818.
    PMID: 27436496 DOI: 10.1038/srep29818
    This paper presents the investigation of path loss variation for subject-specific on-body radio propagation channels, considering the effect of metallic spectacles and loop like metallic accessories. Adding metallic items may affect the operability of Body Centric Wireless Communications (BCWC). Measurements were carried out in an RF-shielded room lined with microwave absorbing sheets for strategically placed bodyworn antennas covering the upper front torso and the lower limbs. The path loss of the on-body radio channel was characterized explicitly taking into account the body size of the subjects. For metallic loop-like accessories, the results indicate that for underweight subjects, there was a slightly higher influence, up to 2%, compared to normal and overweight subjects. Our findings indicate that a noticeable effect exists on on-body channels for dynamic movements where the metallic watch acts as a local scatterer that affects the non-line-of-sight (NLOS) signal path between transmitter and receiver for underweight subjects in comparison to normal and overweight subjects. The path loss decreases when the receiving terminal was positioned very close to the metallic item. If a loop-like metallic accessory is not appropriately considered when designing the radio channel on a subject, the reliability of the body-centric wireless system may degrade.
  5. Gill MR, Harun SN, Halder S, Boghozian RA, Ramadan K, Ahmad H, et al.
    Sci Rep, 2016 08 25;6:31973.
    PMID: 27558808 DOI: 10.1038/srep31973
    Ruthenium(II) polypyridyl complexes can intercalate DNA with high affinity and prevent cell proliferation; however, the direct impact of ruthenium-based intercalation on cellular DNA replication remains unknown. Here we show the multi-intercalator [Ru(dppz)2(PIP)](2+) (dppz = dipyridophenazine, PIP = 2-(phenyl)imidazo[4,5-f][1,10]phenanthroline) immediately stalls replication fork progression in HeLa human cervical cancer cells. In response to this replication blockade, the DNA damage response (DDR) cell signalling network is activated, with checkpoint kinase 1 (Chk1) activation indicating prolonged replication-associated DNA damage, and cell proliferation is inhibited by G1-S cell-cycle arrest. Co-incubation with a Chk1 inhibitor achieves synergistic apoptosis in cancer cells, with a significant increase in phospho(Ser139) histone H2AX (γ-H2AX) levels and foci indicating increased conversion of stalled replication forks to double-strand breaks (DSBs). Normal human epithelial cells remain unaffected by this concurrent treatment. Furthermore, pre-treatment of HeLa cells with [Ru(dppz)2(PIP)](2+) before external beam ionising radiation results in a supra-additive decrease in cell survival accompanied by increased γ-H2AX expression, indicating the compound functions as a radiosensitizer. Together, these results indicate ruthenium-based intercalation can block replication fork progression and demonstrate how these DNA-binding agents may be combined with DDR inhibitors or ionising radiation to achieve more efficient cancer cell killing.
  6. Ravishankar D, Salamah M, Attina A, Pothi R, Vallance TM, Javed M, et al.
    Sci Rep, 2017 07 18;7(1):5738.
    PMID: 28720875 DOI: 10.1038/s41598-017-05936-3
    The constant increase in cardiovascular disease rate coupled with significant drawbacks of existing therapies emphasise the necessity to improve therapeutic strategies. Natural flavonoids exert innumerable pharmacological effects in humans. Here, we demonstrate the effects of chrysin, a natural flavonoid found largely in honey and passionflower on the modulation of platelet function, haemostasis and thrombosis. Chrysin displayed significant inhibitory effects on isolated platelets, however, its activity was substantially reduced under physiological conditions. In order to increase the efficacy of chrysin, a sulfur derivative (thio-chrysin), and ruthenium-complexes (Ru-chrysin and Ru-thio-chrysin) were synthesised and their effects on the modulation of platelet function were evaluated. Indeed, Ru-thio-chrysin displayed a 4-fold greater inhibition of platelet function and thrombus formation in vitro than chrysin under physiologically relevant conditions such as in platelet-rich plasma and whole blood. Notably, Ru-thio-chrysin exhibited similar efficacy to chrysin in the modulation of haemostasis in mice. Increased bioavailability and cell permeability of Ru-thio-chrysin compared to chrysin were found to be the basis for its enhanced activity. Together, these results demonstrate that Ru-thio-coupled natural compounds such as chrysin may serve as promising templates for the development of novel anti-thrombotic agents.
  7. Vallance TM, Ravishankar D, Albadawi DAI, Layfield H, Sheard J, Vaiyapuri R, et al.
    Sci Rep, 2019 12 03;9(1):18258.
    PMID: 31796818 DOI: 10.1038/s41598-019-54617-w
    Platelets are small circulating blood cells that play essential roles in the maintenance of haemostasis via blood clotting. However, they also play critical roles in the regulation of innate immune responses. Inflammatory receptors, specifically Toll-like receptor (TLR)-4, have been reported to modify platelet reactivity. A plethora of studies have reported controversial functions of TLR4 in the modulation of platelet function using various chemotypes and preparations of its ligand, lipopolysaccharide (LPS). The method of preparation of LPS may explain these discrepancies however this is not fully understood. Hence, to determine the impact of LPS on platelet activation, we used ultrapure preparations of LPS from Escherichia coli (LPSEC), Salmonella minnesota (LPSSM), and Rhodobacter sphaeroides (LPSRS) and examined their actions under diverse experimental conditions in human platelets. LPSEC did not affect platelet activation markers such as inside-out signalling to integrin αIIbβ3 or P-selectin exposure upon agonist-induced activation in platelet-rich plasma or whole blood whereas LPSSM and LPSRS inhibited platelet activation under specific conditions at supraphysiological concentrations. Overall, our data demonstrate that platelet activation is not largely influenced by any of the ultrapure LPS chemotypes used in this study on their own except under certain conditions.
  8. Ravishankar D, Salamah M, Akimbaev A, Williams HF, Albadawi DAI, Vaiyapuri R, et al.
    Sci Rep, 2018 Jun 22;8(1):9528.
    PMID: 29934595 DOI: 10.1038/s41598-018-27809-z
    Flavonoids exert innumerable beneficial effects on cardiovascular health including the reduction of platelet activation, and thereby, thrombosis. Hence, flavonoids are deemed to be a molecular template for the design of novel therapeutic agents for various diseases including thrombotic conditions. However, the structure-activity relationships of flavonoids with platelets is not fully understood. Therefore, this study aims to advance the current knowledge on structure-activity relationships of flavonoids through a systematic analysis of structurally-related flavones. Here, we investigated a panel of 16 synthetic flavones containing hydroxy or methoxy groups at C-7,8 positions on the A-ring, with a phenyl group or its bioisosteres as the B-ring, along with their thio analogues possessing a sulfur molecule at the 4th carbon position of the C-ring. The antiplatelet efficacies of these compounds were analysed using human isolated platelets upon activation with cross-linked collagen-related peptide by optical aggregometry. The results demonstrate that the hydroxyl groups in flavonoids are important for optimum platelet inhibitory activities. In addition, the 4-C=O and B ring phenyl groups are less critical for the antiplatelet activity of these flavonoids. This structure-activity relationship of flavonoids with the modulation of platelet function may guide the design, optimisation and development of flavonoid scaffolds as antiplatelet agents.
  9. Trakunjae C, Boondaeng A, Apiwatanapiwat W, Kosugi A, Arai T, Sudesh K, et al.
    Sci Rep, 2021 01 21;11(1):1896.
    PMID: 33479335 DOI: 10.1038/s41598-021-81386-2
    Poly-β-hydroxybutyrate (PHB) is a biodegradable polymer, synthesized as carbon and energy reserve by bacteria and archaea. To the best of our knowledge, this is the first report on PHB production by a rare actinomycete species, Rhodococcus pyridinivorans BSRT1-1. Response surface methodology (RSM) employing central composite design, was applied to enhance PHB production in a flask scale. A maximum yield of 3.6 ± 0.5 g/L in biomass and 43.1 ± 0.5 wt% of dry cell weight (DCW) of PHB were obtained when using RSM optimized medium, which was improved the production of biomass and PHB content by 2.5 and 2.3-fold, respectively. The optimized medium was applied to upscale PHB production in a 10 L stirred-tank bioreactor, maximum biomass of 5.2 ± 0.5 g/L, and PHB content of 46.8 ± 2 wt% DCW were achieved. Furthermore, the FTIR and 1H NMR results confirmed the polymer as PHB. DSC and TGA analysis results revealed the melting, glass transition, and thermal decomposition temperature of 171.8, 4.03, and 288 °C, respectively. In conclusion, RSM can be a promising technique to improve PHB production by a newly isolated strain of R. pyridinivorans BSRT1-1 and the properties of produced PHB possessed similar properties compared to commercial PHB.
  10. Trakunjae C, Boondaeng A, Apiwatanapiwat W, Janchai P, Neoh SZ, Sudesh K, et al.
    Sci Rep, 2023 Jun 02;13(1):9005.
    PMID: 37268758 DOI: 10.1038/s41598-023-36180-7
    Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(3HB-co-3HHx)] is a bacterial copolymer in the polyhydroxyalkanoates (PHAs) family, a next-generation bioplastic. Our research team recently engineered a newly P(3HB-co-3HHx)-producing bacterial strain, Cupriavidus necator PHB-4/pBBR_CnPro-phaCRp. This strain can produce P(3HB-co-2 mol% 3HHx) using crude palm kernel oil (CPKO) as a sole carbon substrate. However, the improvement of P(3HB-co-3HHx) copolymer production by this strain has not been studied so far. Thus, this study aims to enhance the production of P(3HB-co-3HHx) copolymers containing higher 3HHx monomer compositions using response surface methodology (RSM). Three significant factors for P(3HB-co-3HHx) copolymers production, i.e., CPKO concentration, sodium hexanoate concentration, and cultivation time, were studied in the flask scale. As a result, a maximum of 3.6 ± 0.4 g/L of P(3HB-co-3HHx) with 4 mol% 3HHx compositions was obtained using the RSM optimized condition. Likewise, the higher 3HHx monomer composition (5 mol%) was obtained when scaling up the fermentation in a 10L-stirrer bioreactor. Furthermore, the produced polymer's properties were similar to marketable P(3HB-co-3HHx), making this polymer suitable for a wide range of applications.
  11. Gunaletchumy SP, Seevasant I, Tan MH, Croft LJ, Mitchell HM, Goh KL, et al.
    Sci Rep, 2014 Dec 11;4:7431.
    PMID: 25503415 DOI: 10.1038/srep07431
    Helicobacter pylori infection results in diverse clinical conditions ranging from chronic gastritis and ulceration to gastric adenocarcinoma. Among the multiethnic population of Malaysia, Indians consistently have a higher H. pylori prevalence as compared with Chinese and Malays. Despite the high prevalence of H. pylori, Indians have a relatively low incidence of peptic ulcer disease and gastric cancer. In contrast, gastric cancer and peptic ulcer disease incidence is high in Chinese. H. pylori strains from Chinese strains predominantly belong to the hspEAsia subpopulation while Indian/Malay strains mainly belong to the hspIndia subpopulation. By comparing the genome of 27 Asian strains from different subpopulations, we identified six genes associated with risk of H. pylori-induced peptic ulcer disease and gastric cancer. This study serves as an important foundation for future studies aiming to understand the role of bacterial factors in H. pylori-induced gastro-duodenal diseases.
  12. Khosravi Y, Seow SW, Amoyo AA, Chiow KH, Tan TL, Wong WY, et al.
    Sci Rep, 2015;5:8731.
    PMID: 25736205 DOI: 10.1038/srep08731
    Helicobacter pylori, is an invariably commensal resident of the gut microbiome associated with gastric ulcer in adults. In addition, these patients also suffered from a low grade inflammation that activates the immune system and thus increased shunting of energy to host defense mechanisms. To assess whether a H. pylori infection could affect growth in early life, we determined the expression levels of selected metabolic gut hormones in germ free (GF) and specific pathogen-free (SPF) mice with and without the presence of H. pylori. Despite H. pylori-infected (SPFH) mice display alteration in host metabolism (elevated levels of leptin, insulin and peptide YY) compared to non-infected SPF mice, their growth curves remained the same. SPFH mice also displayed increased level of eotaxin-1. Interestingly, GF mice infected with H. pylori (GFH) also displayed increased levels of ghrelin and PYY. However, in contrast to SPFH mice, GFH showed reduced weight gain and malnutrition. These preliminary findings show that exposure to H. pylori alters host metabolism early in life; but the commensal microbiota in SPF mice can attenuate the growth retarding effect from H. pylori observed in GF mice. Further investigations of possible additional side effects of H. pylori are highly warranted.
  13. Kang WT, Vellasamy KM, Vadivelu J
    Sci Rep, 2016 09 16;6:33528.
    PMID: 27634329 DOI: 10.1038/srep33528
    Burkholderia pseudomallei, the etiological agent for melioidosis, is known to secrete a type III secretion system (TTSS) protein into the host's internal milieu. One of the TTSS effector protein, BipC, has been shown to play an important role in the B. pseudomallei pathogenesis. To identify the host response profile that was directly or indirectly regulated by this protein, genome-wide transcriptome approach was used to examine the gene expression profiles of infected mice. The transcriptome analysis of the liver and spleen revealed that a total of approximately 1,000 genes were transcriptionally affected by BipC. Genes involved in bacterial invasion, regulation of actin cytoskeleton, and MAPK signalling pathway were over-expressed and may be specifically regulated by BipC in vivo. These results suggest that BipC mainly targets pathways related to the cellular processes which could modulate the cellular trafficking processes. The host transcriptional response exhibited remarkable differences with and without the presence of the BipC protein. Overall, the detailed picture of this study provides new insights that BipC may have evolved to efficiently manipulate host-cell pathways which is crucial in the intracellular lifecycle of B. pseudomallei.
  14. Mariappan V, Vellasamy KM, Vadivelu J
    Sci Rep, 2017 08 21;7(1):9015.
    PMID: 28827633 DOI: 10.1038/s41598-017-09373-0
    Little is known about the evolution, adaptation and pathogenesis of Burkholderia pseudomallei within host during acute melioidosis infection. Melioidosis is a potential life threatening disease contracted through inhalation, ingestion, inoculation or direct entry of the organism into the blood stream via wounds or skin abrasions from contaminated soil and water. Environmental B. pseudomallei strain (Bp MARAN ), isolated during a melioidosis outbreak in Pahang, Malaysia was injected intra-peritoneally into a mouse and passaged strain was recovered from spleen (Bpmouse-adapted). A gel-based comparative proteomics profiling approach was used, to map and identify differentially expressed proteins (fold-change ≥ 2; p-value ≤ 0.05) between the strains. A total of 730 and 685 spots were visualised in the Bp MARAN and Bpmouse-adapted strains, respectively. Of the 730 spots (Bp MARAN as reference gel), 87 spots were differentially regulated (44 up- and 43 down-regulated). The identified proteins were classified as proteins related to metabolism, stress response, virulence, signal transduction, or adhesion. In comparison, it was found that those proteins related to adhesins, virulence factors and stress- response were up-regulated and could possibly explain the adaptation of the bacteria in the host. Investigating the differentially expressed proteins may provide better perspective of bacterial factors which aid survivability of B. pseudomallei in host.
  15. Lo TS, Lin YH, Yusoff FM, Chu HC, Hsieh WC, Uy-Patrimonio MC
    Sci Rep, 2016 12 19;6:38960.
    PMID: 27991501 DOI: 10.1038/srep38960
    Our aim is to study the inflammatory response towards the collagen-coated and non-coated polypropylene meshes in rats and the urodynamic investigation post-operatively. Forty-two female Sprague Dawley were divided into 7 groups of 6 rats; Control, Day 7 and 30 for Sham, Avaulta Plus (MPC), Perigee (MP). UDS were taken at days 7 and 30. Mesh with the vagina and bladder wall was removed and sent for immunohistochemical examination. Results showed intense inflammatory reaction on day 7 in the study groups which decreased on day 30. IL-1, TNF-α, MMP-2 and CD31 were observed to decrease from day 7 to day 30. NGF was almost normal on day 30 in all groups. UDS showed no difference in voiding pressure. Both Study and Sham groups had shorter voiding interval (VI) on day 7 but significantly lower in MPC. VI had significantly increased on day 30 in all groups. Voided volume was significantly lower in the mesh groups even when an increase was seen on day 30. In conclusion, the higher levels of IL-1, TNF-α and MMP-2 in collagen-coated polypropylene mesh imply greater inflammation than the non-coated polypropylene mesh. Mesh implantation can lead to shorter voiding interval and smaller bladder capacity.
  16. Hamdan PNF, Hamzaid NA, Hasnan N, Abd Razak NA, Razman R, Usman J
    Sci Rep, 2024 Mar 18;14(1):6451.
    PMID: 38499594 DOI: 10.1038/s41598-024-56955-w
    Literature has shown that simulated power production during conventional functional electrical stimulation (FES) cycling was improved by 14% by releasing the ankle joint from a fixed ankle setup and with the stimulation of the tibialis anterior and triceps surae. This study aims to investigate the effect of releasing the ankle joint on the pedal power production during FES cycling in persons with spinal cord injury (SCI). Seven persons with motor complete SCI participated in this study. All participants performed 1 min of fixed-ankle and 1 min of free-ankle FES cycling with two stimulation modes. In mode 1 participants performed FES-evoked cycling with the stimulation of quadriceps and hamstring muscles only (QH stimulation), while Mode 2 had stimulation of quadriceps, hamstring, tibialis anterior, and triceps surae muscles (QHT stimulation). The order of each trial was randomized in each participant. Free-ankle FES cycling offered greater ankle plantar- and dorsiflexion movement at specific slices of 20° crank angle intervals compared to fixed-ankle. There were significant differences in the mean and peak normalized pedal power outputs (POs) [F(1,500) = 14.03, p 
  17. Sokama-Neuyam YA, Yusof MAM, Owusu SK, Darkwah-Owusu V, Turkson JN, Otchere AS, et al.
    Sci Rep, 2023 Jun 06;13(1):9155.
    PMID: 37280365 DOI: 10.1038/s41598-023-36419-3
    A viable CO2 storage resource must have sufficient storage capacity, reliable containment efficiency and adequate well injectivity. Deep saline formations stand out in terms of storage capacity and containment efficiency. However, formation brine dry-out and salt precipitation in the near well region could impair CO2 injectivity in deep saline reservoirs, thus reducing their potential for CO2 storage. Core-flood experiments and analytical modelling were used to investigate various mechanisms of external and internal salt precipitation. Particularly, the impact of the extension of the dry-out region on CO2 injectivity was investigated. It was found that, for high permeability rocks, injection of CO2 at relatively low injection rates could result in salt cake deposition at the injection inlet especially under high salinity conditions. It was also found that extension of the dry-out region does not have significant impact on CO2 injectivity. Although the magnitude of CO2 injectivity impairment increased more than two-fold when initial brine salinity was doubled, real-time changes in CO2 injectivity during the drying process was found to be independent of initial brine salinity. We have shown that the bundle-of-tubes model could provide useful insight into the process of brine vaporization and salt deposition in the dry-out region during CO2 injection. This work provides vital understanding of the effect of salt precipitation on CO2 injectivity.
  18. Higuchi A, Kao SH, Ling QD, Chen YM, Li HF, Alarfaj AA, et al.
    Sci Rep, 2015 Dec 14;5:18136.
    PMID: 26656754 DOI: 10.1038/srep18136
    The tentative clinical application of human pluripotent stem cells (hPSCs), such as human embryonic stem cells and human induced pluripotent stem cells, is restricted by the possibility of xenogenic contamination resulting from the use of mouse embryonic fibroblasts (MEFs) as a feeder layer. Therefore, we investigated hPSC cultures on biomaterials with different elasticities that were grafted with different nanosegments. We prepared dishes coated with polyvinylalcohol-co-itaconic acid hydrogels grafted with an oligopeptide derived from vitronectin (KGGPQVTRGDVFTMP) with elasticities ranging from 10.3 to 30.4 kPa storage moduli by controlling the crosslinking time. The hPSCs cultured on the stiffest substrates (30.4 kPa) tended to differentiate after five days of culture, whereas the hPSCs cultured on the optimal elastic substrates (25 kPa) maintained their pluripotency for over 20 passages under xeno-free conditions. These results indicate that cell culture matrices with optimal elasticity can maintain the pluripotency of hPSCs in culture.
  19. Higuchi A, Wang CT, Ling QD, Lee HH, Kumar SS, Chang Y, et al.
    Sci Rep, 2015;5:10217.
    PMID: 25970301 DOI: 10.1038/srep10217
    Human adipose-derived stem cells (hADSCs) exhibit heterogeneous characteristics, indicating various genotypes and differentiation abilities. The isolated hADSCs can possess different purity levels and divergent properties depending on the purification methods used. We developed a hybrid-membrane migration method that purifies hADSCs from a fat tissue solution with extremely high purity and pluripotency. A primary fat-tissue solution was permeated through the porous membranes with a pore size from 8 to 25 μm, and the membranes were incubated in cell culture medium for 15-18 days. The hADSCs that migrated from the membranes contained an extremely high percentage (e.g., >98%) of cells positive for mesenchymal stem cell markers and showed almost one order of magnitude higher expression of some pluripotency genes (Oct4, Sox2, Klf4 and Nanog) compared with cells isolated using the conventional culture method.
  20. Chen YM, Chen LH, Li MP, Li HF, Higuchi A, Kumar SS, et al.
    Sci Rep, 2017 03 23;7:45146.
    PMID: 28332572 DOI: 10.1038/srep45146
    Establishing cultures of human embryonic (ES) and induced pluripotent (iPS) stem cells in xeno-free conditions is essential for producing clinical-grade cells. Development of cell culture biomaterials for human ES and iPS cells is critical for this purpose. We designed several structures of oligopeptide-grafted poly (vinyl alcohol-co-itaconic acid) hydrogels with optimal elasticity, and prepared them in formations of single chain, single chain with joint segment, dual chain with joint segment, and branched-type chain. Oligopeptide sequences were selected from integrin- and glycosaminoglycan-binding domains of the extracellular matrix. The hydrogels grafted with vitronectin-derived oligopeptides having a joint segment or a dual chain, which has a storage modulus of 25 kPa, supported the long-term culture of human ES and iPS cells for over 10 passages. The dual chain and/or joint segment with cell adhesion molecules on the hydrogels facilitated the proliferation and pluripotency of human ES and iPS cells.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links