Displaying publications 141 - 160 of 263 in total

Abstract:
Sort:
  1. Rahman MM, Khatun F, Uzzaman A, Sami SI, Bhuiyan MA, Kiong TS
    Int J Health Serv, 2021 10;51(4):446-461.
    PMID: 33999732 DOI: 10.1177/00207314211017469
    The novel coronavirus disease (COVID-19) has spread over 219 countries of the globe as a pandemic, creating alarming impacts on health care, socioeconomic environments, and international relationships. The principal objective of the study is to provide the current technological aspects of artificial intelligence (AI) and other relevant technologies and their implications for confronting COVID-19 and preventing the pandemic's dreadful effects. This article presents AI approaches that have significant contributions in the fields of health care, then highlights and categorizes their applications in confronting COVID-19, such as detection and diagnosis, data analysis and treatment procedures, research and drug development, social control and services, and the prediction of outbreaks. The study addresses the link between the technologies and the epidemics as well as the potential impacts of technology in health care with the introduction of machine learning and natural language processing tools. It is expected that this comprehensive study will support researchers in modeling health care systems and drive further studies in advanced technologies. Finally, we propose future directions in research and conclude that persuasive AI strategies, probabilistic models, and supervised learning are required to tackle future pandemic challenges.
    Matched MeSH terms: Artificial Intelligence
  2. Huqh MZU, Abdullah JY, Wong LS, Jamayet NB, Alam MK, Rashid QF, et al.
    Int J Environ Res Public Health, 2022 Aug 31;19(17).
    PMID: 36078576 DOI: 10.3390/ijerph191710860
    OBJECTIVE: The objective of this systematic review was (a) to explore the current clinical applications of AI/ML (Artificial intelligence and Machine learning) techniques in diagnosis and treatment prediction in children with CLP (Cleft lip and palate), (b) to create a qualitative summary of results of the studies retrieved.

    MATERIALS AND METHODS: An electronic search was carried out using databases such as PubMed, Scopus, and the Web of Science Core Collection. Two reviewers searched the databases separately and concurrently. The initial search was conducted on 6 July 2021. The publishing period was unrestricted; however, the search was limited to articles involving human participants and published in English. Combinations of Medical Subject Headings (MeSH) phrases and free text terms were used as search keywords in each database. The following data was taken from the methods and results sections of the selected papers: The amount of AI training datasets utilized to train the intelligent system, as well as their conditional properties; Unilateral CLP, Bilateral CLP, Unilateral Cleft lip and alveolus, Unilateral cleft lip, Hypernasality, Dental characteristics, and sagittal jaw relationship in children with CLP are among the problems studied.

    RESULTS: Based on the predefined search strings with accompanying database keywords, a total of 44 articles were found in Scopus, PubMed, and Web of Science search results. After reading the full articles, 12 papers were included for systematic analysis.

    CONCLUSIONS: Artificial intelligence provides an advanced technology that can be employed in AI-enabled computerized programming software for accurate landmark detection, rapid digital cephalometric analysis, clinical decision-making, and treatment prediction. In children with corrected unilateral cleft lip and palate, ML can help detect cephalometric predictors of future need for orthognathic surgery.

    Matched MeSH terms: Artificial Intelligence
  3. Li C, Yang M, Zhang Y, Lai KW
    Int J Environ Res Public Health, 2022 Nov 14;19(22).
    PMID: 36429697 DOI: 10.3390/ijerph192214976
    PURPOSE: Mental health assessments that combine patients' facial expressions and behaviors have been proven effective, but screening large-scale student populations for mental health problems is time-consuming and labor-intensive. This study aims to provide an efficient and accurate intelligent method for further psychological diagnosis and treatment, which combines artificial intelligence technologies to assist in evaluating the mental health problems of college students.

    MATERIALS AND METHODS: We propose a mixed-method study of mental health assessment that combines psychological questionnaires with facial emotion analysis to comprehensively evaluate the mental health of students on a large scale. The Depression Anxiety and Stress Scale-21(DASS-21) is used for the psychological questionnaire. The facial emotion recognition model is implemented by transfer learning based on neural networks, and the model is pre-trained using FER2013 and CFEE datasets. Among them, the FER2013 dataset consists of 48 × 48-pixel face gray images, a total of 35,887 face images. The CFEE dataset contains 950,000 facial images with annotated action units (au). Using a random sampling strategy, we sent online questionnaires to 400 college students and received 374 responses, and the response rate was 93.5%. After pre-processing, 350 results were available, including 187 male and 153 female students. First, the facial emotion data of students were collected in an online questionnaire test. Then, a pre-trained model was used for emotion recognition. Finally, the online psychological questionnaire scores and the facial emotion recognition model scores were collated to give a comprehensive psychological evaluation score.

    RESULTS: The experimental results of the facial emotion recognition model proposed to show that its classification results are broadly consistent with the mental health survey results. This model can be used to improve efficiency. In particular, the accuracy of the facial emotion recognition model proposed in this paper is higher than that of the general mental health model, which only uses the traditional single questionnaire. Furthermore, the absolute errors of this study in the three symptoms of depression, anxiety, and stress are lower than other mental health survey results and are only 0.8%, 8.1%, 3.5%, and 1.8%, respectively.

    CONCLUSION: The mixed method combining intelligent methods and scales for mental health assessment has high recognition accuracy. Therefore, it can support efficient large-scale screening of students' psychological problems.

    Matched MeSH terms: Artificial Intelligence*
  4. Chau RCW, Li GH, Tew IM, Thu KM, McGrath C, Lo WL, et al.
    Int Dent J, 2023 Oct;73(5):724-730.
    PMID: 37117096 DOI: 10.1016/j.identj.2023.03.007
    OBJECTIVES: Gingivitis is one of the most prevalent plaque-initiated dental diseases globally. It is challenging to maintain satisfactory plaque control without continuous professional advice. Artificial intelligence may be used to provide automated visual plaque control advice based on intraoral photographs.

    METHODS: Frontal view intraoral photographs fulfilling selection criteria were collected. Along the gingival margin, the gingival conditions of individual sites were labelled as healthy, diseased, or questionable. Photographs were randomly assigned as training or validation datasets. Training datasets were input into a novel artificial intelligence system and its accuracy in detection of gingivitis including sensitivity, specificity, and mean intersection-over-union were analysed using validation dataset. The accuracy was reported according to STARD-2015 statement.

    RESULTS: A total of 567 intraoral photographs were collected and labelled, of which 80% were used for training and 20% for validation. Regarding training datasets, there were total 113,745,208 pixels with 9,270,413; 5,711,027; and 4,596,612 pixels were labelled as healthy, diseased, and questionable respectively. Regarding validation datasets, there were 28,319,607 pixels with 1,732,031; 1,866,104; and 1,116,493 pixels were labelled as healthy, diseased, and questionable, respectively. AI correctly predicted 1,114,623 healthy and 1,183,718 diseased pixels with sensitivity of 0.92 and specificity of 0.94. The mean intersection-over-union of the system was 0.60 and above the commonly accepted threshold of 0.50.

    CONCLUSIONS: Artificial intelligence could identify specific sites with and without gingival inflammation, with high sensitivity and high specificity that are on par with visual examination by human dentist. This system may be used for monitoring of the effectiveness of patients' plaque control.

    Matched MeSH terms: Artificial Intelligence
  5. Khataee HR, Ibrahim MY
    IET Nanobiotechnol, 2012 Sep;6(3):87-92.
    PMID: 22894532 DOI: 10.1049/iet-nbt.2011.0062
    Kinesin is a protein-based natural nanomotor that transports molecular cargoes within cells by walking along microtubules. Kinesin nanomotor is considered as a bio-nanoagent which is able to sense the cell through its sensors (i.e. its heads and tail), make the decision internally and perform actions on the cell through its actuator (i.e. its motor domain). The study maps the agent-based architectural model of internal decision-making process of kinesin nanomotor to a machine language using an automata algorithm. The applied automata algorithm receives the internal agent-based architectural model of kinesin nanomotor as a deterministic finite automaton (DFA) model and generates a regular machine language. The generated regular machine language was acceptable by the architectural DFA model of the nanomotor and also in good agreement with its natural behaviour. The internal agent-based architectural model of kinesin nanomotor indicates the degree of autonomy and intelligence of the nanomotor interactions with its cell. Thus, our developed regular machine language can model the degree of autonomy and intelligence of kinesin nanomotor interactions with its cell as a language. Modelling of internal architectures of autonomous and intelligent bio-nanosystems as machine languages can lay the foundation towards the concept of bio-nanoswarms and next phases of the bio-nanorobotic systems development.
    Matched MeSH terms: Artificial Intelligence
  6. Ahirwal MK, Kumar A, Singh GK
    IEEE/ACM Trans Comput Biol Bioinform, 2013 Nov-Dec;10(6):1491-504.
    PMID: 24407307 DOI: 10.1109/TCBB.2013.119
    This paper explores the migration of adaptive filtering with swarm intelligence/evolutionary techniques employed in the field of electroencephalogram/event-related potential noise cancellation or extraction. A new approach is proposed in the form of controlled search space to stabilize the randomness of swarm intelligence techniques especially for the EEG signal. Swarm-based algorithms such as Particles Swarm Optimization, Artificial Bee Colony, and Cuckoo Optimization Algorithm with their variants are implemented to design optimized adaptive noise canceler. The proposed controlled search space technique is tested on each of the swarm intelligence techniques and is found to be more accurate and powerful. Adaptive noise canceler with traditional algorithms such as least-mean-square, normalized least-mean-square, and recursive least-mean-square algorithms are also implemented to compare the results. ERP signals such as simulated visual evoked potential, real visual evoked potential, and real sensorimotor evoked potential are used, due to their physiological importance in various EEG studies. Average computational time and shape measures of evolutionary techniques are observed 8.21E-01 sec and 1.73E-01, respectively. Though, traditional algorithms take negligible time consumption, but are unable to offer good shape preservation of ERP, noticed as average computational time and shape measure difference, 1.41E-02 sec and 2.60E+00, respectively.
    Matched MeSH terms: Artificial Intelligence
  7. Kamel NS, Sayeed S, Ellis GA
    IEEE Trans Pattern Anal Mach Intell, 2008 Jun;30(6):1109-13.
    PMID: 18421114 DOI: 10.1109/TPAMI.2008.32
    Utilizing the multiple degrees of freedom offered by the data glove for each finger and the hand, a novel on-line signature verification system using the Singular Value Decomposition (SVD) numerical tool for signature classification and verification is presented. The proposed technique is based on the Singular Value Decomposition in finding r singular vectors sensing the maximal energy of glove data matrix A, called principal subspace, so the effective dimensionality of A can be reduced. Having modeled the data glove signature through its r-principal subspace, signature authentication is performed by finding the angles between the different subspaces. A demonstration of the data glove is presented as an effective high-bandwidth data entry device for signature verification. This SVD-based signature verification technique is tested and its performance is shown to be able to recognize forgery signatures with a false acceptance rate of less than 1.2%.
    Matched MeSH terms: Artificial Intelligence*
  8. Yap PT, Paramesran R
    IEEE Trans Pattern Anal Mach Intell, 2005 Dec;27(12):1996-2002.
    PMID: 16355666
    Legendre moments are continuous moments, hence, when applied to discrete-space images, numerical approximation is involved and error occurs. This paper proposes a method to compute the exact values of the moments by mathematically integrating the Legendre polynomials over the corresponding intervals of the image pixels. Experimental results show that the values obtained match those calculated theoretically, and the image reconstructed from these moments have lower error than that of the conventional methods for the same order. Although the same set of exact Legendre moments can be obtained indirectly from the set of geometric moments, the computation time taken is much longer than the proposed method.
    Matched MeSH terms: Artificial Intelligence*
  9. Teoh AB, Goh A, Ngo DC
    IEEE Trans Pattern Anal Mach Intell, 2006 Dec;28(12):1892-901.
    PMID: 17108365
    Biometric analysis for identity verification is becoming a widespread reality. Such implementations necessitate large-scale capture and storage of biometric data, which raises serious issues in terms of data privacy and (if such data is compromised) identity theft. These problems stem from the essential permanence of biometric data, which (unlike secret passwords or physical tokens) cannot be refreshed or reissued if compromised. Our previously presented biometric-hash framework prescribes the integration of external (password or token-derived) randomness with user-specific biometrics, resulting in bitstring outputs with security characteristics (i.e., noninvertibility) comparable to cryptographic ciphers or hashes. The resultant BioHashes are hence cancellable, i.e., straightforwardly revoked and reissued (via refreshed password or reissued token) if compromised. BioHashing furthermore enhances recognition effectiveness, which is explained in this paper as arising from the Random Multispace Quantization (RMQ) of biometric and external random inputs.
    Matched MeSH terms: Artificial Intelligence*
  10. Loo CK, Rajeswari M, Rao MV
    IEEE Trans Neural Netw, 2004 Nov;15(6):1378-95.
    PMID: 15565767
    This paper presents two novel approaches to determine optimum growing multi-experts network (GMN) structure. The first method called direct method deals with expertise domain and levels in connection with local experts. The growing neural gas (GNG) algorithm is used to cluster the local experts. The concept of error distribution is used to apportion error among the local experts. After reaching the specified size of the network, redundant experts removal algorithm is invoked to prune the size of the network based on the ranking of the experts. However, GMN is not ergonomic due to too many network control parameters. Therefore, a self-regulating GMN (SGMN) algorithm is proposed. SGMN adopts self-adaptive learning rates for gradient-descent learning rules. In addition, SGMN adopts a more rigorous clustering method called fully self-organized simplified adaptive resonance theory in a modified form. Experimental results show SGMN obtains comparative or even better performance than GMN in four benchmark examples, with reduced sensitivity to learning parameters setting. Moreover, both GMN and SGMN outperform the other neural networks and statistical models. The efficacy of SGMN is further justified in three industrial applications and a control problem. It provides consistent results besides holding out a profound potential and promise for building a novel type of nonlinear model consisting of several local linear models.
    Matched MeSH terms: Artificial Intelligence
  11. Oong TH, Isa NA
    IEEE Trans Neural Netw, 2011 Nov;22(11):1823-36.
    PMID: 21968733 DOI: 10.1109/TNN.2011.2169426
    This paper presents a new evolutionary approach called the hybrid evolutionary artificial neural network (HEANN) for simultaneously evolving an artificial neural networks (ANNs) topology and weights. Evolutionary algorithms (EAs) with strong global search capabilities are likely to provide the most promising region. However, they are less efficient in fine-tuning the search space locally. HEANN emphasizes the balancing of the global search and local search for the evolutionary process by adapting the mutation probability and the step size of the weight perturbation. This is distinguishable from most previous studies that incorporate EA to search for network topology and gradient learning for weight updating. Four benchmark functions were used to test the evolutionary framework of HEANN. In addition, HEANN was tested on seven classification benchmark problems from the UCI machine learning repository. Experimental results show the superior performance of HEANN in fine-tuning the network complexity within a small number of generations while preserving the generalization capability compared with other algorithms.
    Matched MeSH terms: Artificial Intelligence
  12. Yap KS, Lim CP, Abidin IZ
    IEEE Trans Neural Netw, 2008 Sep;19(9):1641-6.
    PMID: 18779094 DOI: 10.1109/TNN.2008.2000992
    In this brief, a new neural network model called generalized adaptive resonance theory (GART) is introduced. GART is a hybrid model that comprises a modified Gaussian adaptive resonance theory (MGA) and the generalized regression neural network (GRNN). It is an enhanced version of the GRNN, which preserves the online learning properties of adaptive resonance theory (ART). A series of empirical studies to assess the effectiveness of GART in classification, regression, and time series prediction tasks is conducted. The results demonstrate that GART is able to produce good performances as compared with those of other methods, including the online sequential extreme learning machine (OSELM) and sequential learning radial basis function (RBF) neural network models.
    Matched MeSH terms: Artificial Intelligence
  13. Abidi SS, Cheah YN, Curran J
    IEEE Trans Inf Technol Biomed, 2005 Jun;9(2):193-204.
    PMID: 16138536
    Tacit knowledge of health-care experts is an important source of experiential know-how, yet due to various operational and technical reasons, such health-care knowledge is not entirely harnessed and put into professional practice. Emerging knowledge-management (KM) solutions suggest strategies to acquire the seemingly intractable and nonarticulated tacit knowledge of health-care experts. This paper presents a KM methodology, together with its computational implementation, to 1) acquire the tacit knowledge possessed by health-care experts; 2) represent the acquired tacit health-care knowledge in a computational formalism--i.e., clinical scenarios--that allows the reuse of stored knowledge to acquire tacit knowledge; and 3) crystallize the acquired tacit knowledge so that it is validated for health-care decision-support and medical education systems.
    Matched MeSH terms: Artificial Intelligence*
  14. Hammond ER, Foong AKM, Rosli N, Morbeck DE
    Hum Reprod, 2020 05 01;35(5):1045-1053.
    PMID: 32358601 DOI: 10.1093/humrep/deaa060
    STUDY QUESTION: What is the inter-observer agreement among embryologists for decision to freeze blastocysts of borderline morphology and can it be improved with a modified grading system?

    SUMMARY ANSWER: The inter-observer agreement among embryologists deciding whether to freeze blastocysts of marginal morphology was low and was not improved by a modified grading system.

    WHAT IS KNOWN ALREADY: While previous research on inter-observer variability on the decision of which embryo to transfer from a cohort of blastocysts is good, the impact of grading variability regarding decision to freeze borderline blastocysts has not been investigated. Agreement for inner cell mass (ICM) and trophectoderm (TE) grade is only fair, factors which contribute to the grade that influences decision to freeze.

    STUDY DESIGN, SIZE, DURATION: This was a prospective study involving 18 embryologists working at four different IVF clinics within a single organisation between January 2019 and July 2019.

    PARTICIPANTS/MATERIALS, SETTING, METHODS: All embryologists currently practicing blastocyst grading at a multi-site organisation were invited to participate. The survey was comprised of blastocyst images in three planes and asked (i) the likelihood of freezing and (ii) whether the blastocyst would be frozen based on visual assessment. Blastocysts varied by quality and were categorised as either top (n = 20), borderline (n = 60) or non-viable/degenerate quality (n = 20). A total of 1800 freeze decisions were assessed. To assess the impact of grading criteria on inter-observer agreement for decision to freeze, the survey was taken once when the embryologists used the Gardner criteria and again 6 months after transitioning to a modified Gardner criterion with four grades for ICM and TE. The fourth grade was introduced with the aim to promote higher levels of agreement for the clinical usability decision when the blastocyst was of marginal quality.

    MAIN RESULTS AND THE ROLE OF CHANCE: The inter-observer agreement for decision to freeze was near perfect (kappa 1.0) for top and non-viable/degenerate quality blastocysts, and this was not affected by the blastocysts grading criteria used (top quality; P = 0.330 and non-viable/degenerate quality; P = 0.18). In contrast, the cohort of borderline blastocysts received a mixed freeze rate (average 52.7%) during the first survey, indicative of blastocysts that showed uncertain viability and promoting significant disagreement for decision to freeze among the embryologists (kappa 0.304). After transitioning to a modified Gardner criteria with an additional grading tier, the average freeze rate increased (64.8%; P 

    Matched MeSH terms: Artificial Intelligence*
  15. Silalahi DD, Midi H, Arasan J, Mustafa MS, Caliman JP
    Heliyon, 2020 Jan;6(1):e03176.
    PMID: 32042959 DOI: 10.1016/j.heliyon.2020.e03176
    In practice, the collected spectra are very often composes of complex overtone and many overlapping peaks which may lead to misinterpretation because of its significant nonlinear characteristics. Using linear solution might not be appropriate. In addition, with a high-dimension of dataset due to large number of observations and data points the classical multiple regressions will neglect to fit. These complexities commonly will impact to multicollinearity problem, furthermore the risk of contamination of multiple outliers and high leverage points also increases. To address these problems, a new method called Kernel Partial Diagnostic Robust Potential (KPDRGP) is introduced. The method allows the nonlinear solution which maps nonlinearly the original input

    X

    matrix into higher dimensional feature mapping with corresponds to the Reproducing Kernel Hilbert Spaces (RKHS). In dimensional reduction, the method replaces the dot products calculation of elements in the mapped data to a nonlinear function in the original input space. To prevent the contamination of the multiple outlier and high leverage points the robust procedure using Diagnostic Robust Generalized Potentials (DRGP) algorithm was used. The results verified that using the simulation and real data, the proposed KPDRGP method was superior to the methods in the class of non-kernel and some other robust methods with kernel solution.
    Matched MeSH terms: Artificial Intelligence
  16. Zhan Z, Wang C, Yap JBH, Loi MS
    Heliyon, 2020 Apr;6(4):e03671.
    PMID: 32382668 DOI: 10.1016/j.heliyon.2020.e03671
    This study is aimed to rationalise and demonstrate the efficacy of utilising laser cutting technique in the fabrication of glulam mortise & tenon joints in timber frame. Trial-and-error experiments aided by laser cutter were conducted to produce 3D timber mortise & tenon joints models. The two main instruments used were 3D modelling software and the laser cutter TH 1390/6090. Plywood was chosen because it could produce smooth and accurate cut edges whereby the surface could remain crack-free, and it could increase stability due to its laminated nature. Google SketchUp was used for modelling and Laser CAD v7.52 was used to transfer the 3D models to the laser cutter because it is compatible with AI, BMP, PLT, DXF and DST templates. Four models were designed and fabricated in which the trial-and-error experiments proved laser cutting could speed up the manufacturing process with superb quality and high uniformity. Precision laser cutting supports easy automation, produces small heat-affected zone, minimises deformity, relatively quiet and produces low amount of waste. The LaserCAD could not process 3D images directly but needed 2D images to be transferred, so layering and unfolding works were therefore needed. This study revealed a significant potential of rapid manufacturability of mortise & tenon joints with high-quality and high-uniformity through computer-aided laser cutting technique for wide applications in the built environment.
    Matched MeSH terms: Artificial Intelligence
  17. Alauddin MS, Baharuddin AS, Mohd Ghazali MI
    Healthcare (Basel), 2021 Jan 25;9(2).
    PMID: 33503807 DOI: 10.3390/healthcare9020118
    Dentistry is a part of the field of medicine which is advocated in this digital revolution. The increasing trend in dentistry digitalization has led to the advancement in computer-derived data processing and manufacturing. This progress has been exponentially supported by the Internet of medical things (IoMT), big data and analytical algorithm, internet and communication technologies (ICT) including digital social media, augmented and virtual reality (AR and VR), and artificial intelligence (AI). The interplay between these sophisticated digital aspects has dramatically changed the healthcare and biomedical sectors, especially for dentistry. This myriad of applications of technologies will not only be able to streamline oral health care, facilitate workflow, increase oral health at a fraction of the current conventional cost, relieve dentist and dental auxiliary staff from routine and laborious tasks, but also ignite participatory in personalized oral health care. This narrative article review highlights recent dentistry digitalization encompassing technological advancement, limitations, challenges, and conceptual theoretical modern approaches in oral health prevention and care, particularly in ensuring the quality, efficiency, and strategic dental care in the modern era of dentistry.
    Matched MeSH terms: Artificial Intelligence
  18. Wong KF, Lam XY, Jiang Y, Yeung AWK, Lin Y
    Head Face Med, 2023 Aug 23;19(1):38.
    PMID: 37612673 DOI: 10.1186/s13005-023-00383-0
    BACKGROUND: The application of artificial intelligence (AI) in orthodontics and orthognathic surgery has gained significant attention in recent years. However, there is a lack of bibliometric reports that analyze the academic literature in this field to identify publishing and citation trends. By conducting an analysis of the top 100 most-cited articles on AI in orthodontics and orthognathic surgery, we aim to unveil popular research topics, key authors, institutions, countries, and journals in this area.

    METHODS: A comprehensive search was conducted in the Web of Science (WOS) electronic database to identify the top 100 most-cited articles on AI in orthodontics and orthognathic surgery. Publication and citation data were obtained and further analyzed and visualized using R Biblioshiny. The key domains of the 100 articles were also identified.

    RESULTS: The top 100 most-cited articles were published between 2005 and 2022, contributed by 458 authors, with an average citation count of 22.09. South Korea emerged as the leading contributor with the highest number of publications (28) and citations (595), followed by China (16, 373), and the United States (7, 248). Notably, six South Korean authors ranked among the top 10 contributors, and three South Korean institutions were listed as the most productive. International collaborations were predominantly observed between the United States, China, and South Korea. The main domains of the articles focused on automated imaging assessment (42%), aiding diagnosis and treatment planning (34%), and the assessment of growth and development (10%). Besides, a positive correlation was observed between the testing sample size and citation counts (P = 0.010), as well as between the time of publication and citation counts (P 

    Matched MeSH terms: Artificial Intelligence
  19. Akhtar N, Khan N, Qayyum S, Qureshi MI, Hishan SS
    Front Public Health, 2022;10:869793.
    PMID: 36187628 DOI: 10.3389/fpubh.2022.869793
    The use of technology in the healthcare sector and its medical practices, from patient record maintenance to diagnostics, has significantly improved the health care emergency management system. At that backdrop, it is crucial to explore the role and challenges of these technologies in the healthcare sector. Therefore, this study provides a systematic review of the literature on technological developments in the healthcare sector and deduces its pros and cons. We curate the published studies from the Web of Science and Scopus databases by using PRISMA 2015 guidelines. After mining the data, we selected only 55 studies for the systematic literature review and bibliometric analysis. The study explores four significant classifications of technological development in healthcare: (a) digital technologies, (b) artificial intelligence, (c) blockchain, and (d) the Internet of Things. The novel contribution of current study indicate that digital technologies have significantly influenced the healthcare services such as the beginning of electronic health record, a new era of digital healthcare, while robotic surgeries and machine learning algorithms may replace practitioners as future technologies. However, a considerable number of studies have criticized these technologies in the health sector based on trust, security, privacy, and accuracy. The study suggests that future studies, on technological development in healthcare services, may take into account these issues for sustainable development of the healthcare sector.
    Matched MeSH terms: Artificial Intelligence*
  20. Neo EX, Hasikin K, Mokhtar MI, Lai KW, Azizan MM, Razak SA, et al.
    Front Public Health, 2022;10:851553.
    PMID: 35664109 DOI: 10.3389/fpubh.2022.851553
    Environmental issues such as environmental pollutions and climate change are the impacts of globalization and become debatable issues among academics and industry key players. One of the environmental issues which is air pollution has been catching attention among industrialists, researchers, and communities around the world. However, it has always neglected until the impacts on human health become worse, and at times, irreversible. Human exposure to air pollutant such as particulate matters, sulfur dioxide, ozone and carbon monoxide contributed to adverse health hazards which result in respiratory diseases, cardiorespiratory diseases, cancers, and worst, can lead to death. This has led to a spike increase of hospitalization and emergency department visits especially at areas with worse pollution cases that seriously impacting human life and health. To address this alarming issue, a predictive model of air pollution is crucial in assessing the impacts of health due to air pollution. It is also critical in predicting the air quality index when assessing the risk contributed by air pollutant exposure. Hence, this systemic review explores the existing studies on anticipating air quality impact to human health using the advancement of Artificial Intelligence (AI). From the extensive review, we highlighted research gaps in this field that are worth to inquire. Our study proposes to develop an AI-based integrated environmental and health impact assessment system using federated learning. This is specifically aims to identify the association of health impact and pollution based on socio-economic activities and predict the Air Quality Index (AQI) for impact assessment. The output of the system will be utilized for hospitals and healthcare services management and planning. The proposed solution is expected to accommodate the needs of the critical and prioritization of sensitive group of publics during pollution seasons. Our finding will bring positive impacts to the society in terms of improved healthcare services quality, environmental and health sustainability. The findings are beneficial to local authorities either in healthcare or environmental monitoring institutions especially in the developing countries.
    Matched MeSH terms: Artificial Intelligence
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links