Displaying publications 141 - 160 of 264 in total

Abstract:
Sort:
  1. Ramos-Madrigal J, Sinding MS, Carøe C, Mak SST, Niemann J, Samaniego Castruita JA, et al.
    Curr Biol, 2021 01 11;31(1):198-206.e8.
    PMID: 33125870 DOI: 10.1016/j.cub.2020.10.002
    Extant Canis lupus genetic diversity can be grouped into three phylogenetically distinct clades: Eurasian and American wolves and domestic dogs.1 Genetic studies have suggested these groups trace their origins to a wolf population that expanded during the last glacial maximum (LGM)1-3 and replaced local wolf populations.4 Moreover, ancient genomes from the Yana basin and the Taimyr peninsula provided evidence of at least one extinct wolf lineage that dwelled in Siberia during the Pleistocene.35 Previous studies have suggested that Pleistocene Siberian canids can be classified into two groups based on cranial morphology. Wolves in the first group are most similar to present-day populations, although those in the second group possess intermediate features between dogs and wolves.67 However, whether this morphological classification represents distinct genetic groups remains unknown. To investigate this question and the relationships between Pleistocene canids, present-day wolves, and dogs, we resequenced the genomes of four Pleistocene canids from Northeast Siberia dated between >50 and 14 ka old, including samples from the two morphological categories. We found these specimens cluster with the two previously sequenced Pleistocene wolves, which are genetically more similar to Eurasian wolves. Our results show that, though the four specimens represent extinct wolf lineages, they do not form a monophyletic group. Instead, each Pleistocene Siberian canid branched off the lineage that gave rise to present-day wolves and dogs. Finally, our results suggest the two previously described morphological groups could represent independent lineages similarly related to present-day wolves and dogs.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  2. Kakuda T, Shojo H, Tanaka M, Nambiar P, Minaguchi K, Umetsu K, et al.
    PLoS One, 2016;11(6):e0158463.
    PMID: 27355212 DOI: 10.1371/journal.pone.0158463
    Mitochondrial DNA (mtDNA) serves as a powerful tool for exploring matrilineal phylogeographic ancestry, as well as for analyzing highly degraded samples, because of its polymorphic nature and high copy numbers per cell. The recent advent of complete mitochondrial genome sequencing has led to improved techniques for phylogenetic analyses based on mtDNA, and many multiplex genotyping methods have been developed for the hierarchical analysis of phylogenetically important mutations. However, few high-resolution multiplex genotyping systems for analyzing East-Asian mtDNA can be applied to extremely degraded samples. Here, we present a multiplex system for analyzing mitochondrial single nucleotide polymorphisms (mtSNPs), which relies on a novel amplified product-length polymorphisms (APLP) method that uses inosine-flapped primers and is specifically designed for the detailed haplogrouping of extremely degraded East-Asian mtDNAs. We used fourteen 6-plex polymerase chain reactions (PCRs) and subsequent electrophoresis to examine 81 haplogroup-defining SNPs and 3 insertion/deletion sites, and we were able to securely assign the studied mtDNAs to relevant haplogroups. Our system requires only 1×10-13 g (100 fg) of crude DNA to obtain a full profile. Owing to its small amplicon size (<110 bp), this new APLP system was successfully applied to extremely degraded samples for which direct sequencing of hypervariable segments using mini-primer sets was unsuccessful, and proved to be more robust than conventional APLP analysis. Thus, our new APLP system is effective for retrieving reliable data from extremely degraded East-Asian mtDNAs.
    Matched MeSH terms: DNA, Mitochondrial/genetics*
  3. Nada Raja T, Hu TH, Zainudin R, Lee KS, Perkins SL, Singh B
    BMC Evol. Biol., 2018 04 10;18(1):49.
    PMID: 29636003 DOI: 10.1186/s12862-018-1170-9
    BACKGROUND: Non-human primates have long been identified to harbour different species of Plasmodium. Long-tailed macaques (Macaca fascicularis), in particular, are reservoirs for P. knowlesi, P. inui, P. cynomolgi, P. coatneyi and P. fieldi. A previous study conducted in Sarawak, Malaysian Borneo, however revealed that long-tailed macaques could potentially harbour novel species of Plasmodium based on sequences of small subunit ribosomal RNA and circumsporozoite genes. To further validate this finding, the mitochondrial genome and the apicoplast caseinolytic protease M genes of Plasmodium spp. were sequenced from 43 long-tailed macaque blood samples.

    RESULTS: Apart from several named species of malaria parasites, long-tailed macaques were found to be potentially infected with novel species of Plasmodium, namely one we refer to as "P. inui-like." This group of parasites bifurcated into two monophyletic clades indicating the presence of two distinct sub-populations. Further analyses, which relied on the assumption of strict co-phylogeny between hosts and parasites, estimated a population expansion event of between 150,000 to 250,000 years before present of one of these sub-populations that preceded that of the expansion of P. knowlesi. Furthermore, both sub-populations were found to have diverged from a common ancestor of P. inui approximately 1.5 million years ago. In addition, the phylogenetic analyses also demonstrated that long-tailed macaques are new hosts for P. simiovale.

    CONCLUSIONS: Malaria infections of long-tailed macaques of Sarawak, Malaysian Borneo are complex and include a novel species of Plasmodium that is phylogenetically distinct from P. inui. These macaques are new natural hosts of P. simiovale, a species previously described only in toque monkeys (Macaca sinica) in Sri Lanka. The results suggest that ecological factors could affect the evolution of malaria parasites.

    Matched MeSH terms: DNA, Mitochondrial/genetics
  4. Beck SV, Carvalho GR, Barlow A, Rüber L, Hui Tan H, Nugroho E, et al.
    PLoS One, 2017;12(7):e0179557.
    PMID: 28742862 DOI: 10.1371/journal.pone.0179557
    The complex climatic and geological history of Southeast Asia has shaped this region's high biodiversity. In particular, sea level fluctuations associated with repeated glacial cycles during the Pleistocene both facilitated, and limited, connectivity between populations. In this study, we used data from two mitochondrial and three anonymous nuclear markers to determine whether a fresh/brackish water killifish, Aplocheilus panchax, Hamilton, 1822, could be used to further understand how climatic oscillations and associated sea level fluctuations have shaped the distribution of biota within this region, and whether such patterns show evidence of isolation within palaeodrainage basins. Our analyses revealed three major mitochondrial clades within A. panchax. The basal divergence of A. panchax mitochondrial lineages was approximately 3.5 Ma, whilst the subsequent divergence timings of these clades occurred early Pleistocene (~2.6 Ma), proceeding through the Pleistocene. Continuous phylogeographic analysis showed a clear west-east dispersal followed by rapid radiation across Southeast Asia. Individuals from Krabi, just north of the Isthmus of Kra, were more closely related to the Indian lineages, providing further evidence for a freshwater faunal disjunction at the Isthmus of Kra biogeographic barrier. Our results suggest that Sulawesi, across the Wallace Line, was colonised relatively recently (~30 ka). Nuclear DNA is less geographically structured, although Mantel tests indicated that nuclear genetic distances were correlated with geographic proximity. Overall, these results imply that recent gene flow, as opposed to historical isolation, has been the key factor determining patterns of nuclear genetic variation in A. panchax, however, some evidence of historical isolation is retained within the mitochondrial genome. Our study further validates the existence of a major biogeographic boundary at the Kra Isthmus, and also demonstrates the use of widely distributed fresh/brackishwater species in phylogeographic studies, and their ability to disperse across major marine barriers in relatively recent time periods.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  5. Ali H, Muhammad A, Bala NS, Wang G, Chen Z, Peng Z, et al.
    Mol Phylogenet Evol, 2018 10;127:1000-1009.
    PMID: 29981933 DOI: 10.1016/j.ympev.2018.07.003
    Wolbachia pipientis is a diverse, ubiquitous and most prevalent intracellular bacterial group of alpha-Proteobacteria that is concerned with many biological processes in arthropods. The coconut hispine beetle (CHB), Brontispa longissima (Gestro) is an economically important pest of palm cultivation worldwide. In the present study, we comprehensively surveyed the Wolbachia-infection prevalence and mitochondrial DNA (mtDNA) polymorphism in CHB from five different geographical locations, including China's Mainland and Taiwan, Vietnam, Thailand, Malaysia and Indonesia. A total of 540 sequences were screened in this study through three different genes, i.e., cytochrome oxidase subunit I (COI), Wolbachia outer surface protein (wsp) and multilocus sequencing type (MLST) genes. The COI genetic divergence ranges from 0.08% to 0.67%, and likewise, a significant genetic diversity (π = 0.00082; P = 0.049) was noted within and between all analyzed samples. In the meantime, ten different haplotypes (H) were characterized (haplotype diversity = 0.4379) from 21 different locations, and among them, H6 (46 individuals) have shown a maximum number of population clusters than others. Subsequently, Wolbachia-prevalence results indicated that all tested specimens of CHB were found positive (100%), which suggested that CHB was naturally infected with Wolbachia. Wolbachia sequence results (wsp gene) revealed a high level of nucleotide diversity (π = 0.00047) under Tajima's D test (P = 0.049). Meanwhile, the same trend of nucleotide diversity (π = 0.00041) was observed in Wolbachia concatenated MLST locus. Furthermore, phylogenetic analysis (wsp and concatenated MLST genes) revealed that all collected samples of CHB attributed to same Wolbachia B-supergroup. Our results strongly suggest that Wolbachia bacteria and mtDNA were highly concordant with each other and Wolbachia can affect the genetic structure and diversity within the CHB populations.
    Matched MeSH terms: DNA, Mitochondrial/genetics*
  6. Bunlungsup S, Imai H, Hamada Y, Matsudaira K, Malaivijitnond S
    Am J Primatol, 2017 02;79(2):1-13.
    PMID: 27643851 DOI: 10.1002/ajp.22596
    Macaca fascicularis fascicularis is distributed over a wide area of Southeast Asia. Thailand is located at the center of their distribution range and is the bridge connecting the two biogeographic regions of Indochina and Sunda. However, only a few genetic studies have explored the macaques in this region. To shed some light on the evolutionary history of M. f. fascicularis, including hybridization with M. mulatta, M. f. fascicularis and M. mulatta samples of known origins throughout Thailand and the vicinity were analyzed by molecular phylogenetics using mitochondrial DNA (mtDNA), including the hypervariable region 1, and Y-chromosomal DNA, including SRY and TSPY genes. The mtDNA phylogenetic analysis divided M. f. fascicularis into five subclades (Insular Indonesia, Sundaic Thai Gulf, Vietnam, Sundaic Andaman sea coast, and Indochina) and revealed genetic differentiation between the two sides of the Thai peninsula, which had previously been reported as a single group of Malay peninsular macaques. From the estimated divergence time of the Sundaic Andaman sea coast subclade, it is proposed that after M. f. fascicularis dispersed throughout Southeast Asia, some populations on the south-easternmost Indochina (eastern Thailand, southern Cambodia and southern Vietnam at the present time) migrated south-westwards across the land bridge, which was exposed during the glacial period of the late Pleistocene epoch, to the southernmost Thailand/northern peninsular Malaysia. Then, some of them migrated north and south to colonize the Thai Andaman sea coast and northern Sumatra, respectively. The SRY-TSPY phylogenetic analysis suggested that male-mediated gene flow from M. mulatta southward to M. f. fascicularis was restricted south of, but close to, the Isthmus of Kra. There was a strong impact of the geographical factors in Thailand, such as the Isthmus of Kra, Nakhon Si Thammarat, and Phuket ranges and Sundaland, on M. f. fascicularis biogeography and their hybridization with M. mulatta.
    Matched MeSH terms: DNA, Mitochondrial*
  7. Polgar G, Zaccara S, Babbucci M, Fonzi F, Antognazza CM, Ishak N, et al.
    J Fish Biol, 2017 May;90(5):1926-1943.
    PMID: 28239874 DOI: 10.1111/jfb.13276
    A study was conducted on the habitat distribution of four sympatric species of Periophthalmus (the silver-lined mudskipper Periophthalmus argentilineatus, the slender mudskipper Periophthalmus gracilis, the kalolo mudskipper Periophthalmus kalolo and the Malacca mudskipper Periophthalmus malaccensis) from northern Sulawesi. Molecular phylogenetic reconstructions based on one mtDNA marker (16S) were used to validate the morphological taxa, identifying five molecular clades. Periophthalmus argentilineatus includes two molecular species, which are named Periophthalmus argentilineatus clades F and K. Multivariate direct gradient analysis show that these species form three distinct ecological guilds, with the two molecular species occurring in different guilds. Periophthalmus clade F is ecologically eurytypic; Periophthalmus clade K and P. kalolo are prevalent in ecosystems isolated by strong oceanic currents and at shorter distances from the sea; P. gracilis plus P. malaccensis are prevalent in ecosystems connected by shallow coastal waters, in vegetated habitats at larger distances from the sea. This indicates for the first time that mudskipper species exhibit a range of adaptations to semiterrestrialism not only within genera, but even within morphospecies, delineating a much more complex adaptive scenario than previously assumed.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  8. Chan LL, Mak JW, Ambu S, Chong PY
    PLoS One, 2018;13(10):e0204732.
    PMID: 30356282 DOI: 10.1371/journal.pone.0204732
    The detection and identification of two endocytobiotic bacterial strains, one affiliated to the "Candidatus Caedibacter acanthamoebae"/"Ca. Paracaedimonas acanthamoeba", and another to the endosymbiont of Acanthamoeba UWC8 and "Ca. Jidaibacter acanthamoeba" are described. For endocytobiont screening, we developed a PCR method with a set of broad-range bacterial 16S rRNA primers to substitute the commonly used but technically demanding fluorescent in situ hybridization technique. Our PCR test alone without sequencing failed to discriminate the endocytobiont-containing and endocytobiont-free Acanthamoeba sp. due to the presence of mismatched primers to host mitochondrial DNA. We highlighted the need to perform bacterial primer checking against the Acanthamoeba genome to avoid false positive detection in PCR. Although the genetic aspect of "Ca. Caedibacter acanthamoebae"/"Ca. Paracaedimonas acanthamoeba" and the endosymbiont of Acanthamoeba UWC8/"Ca. Jidaibacter acanthamoeba" are well studied, knowledge pertaining to their morphologies are quite vague. Hence, we used transmission electron microscopy to examine our endocytobionts which are affiliated to previously described intracellular bacteria of Acanthamoeba sp. We used good-quality TEM images for the localization and the fate of the current endocytobionts inside different life stages of the hosts. Furthermore, to the best of our knowledge, our TEM findings are the first to provide morphological evidence for the clearance of defective Acanthamoeba endocytobionts via an autophagic-like process.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  9. Manin BO, Drakeley CJ, Chua TH
    PLoS One, 2018;13(8):e0202905.
    PMID: 30138386 DOI: 10.1371/journal.pone.0202905
    Anopheles balabacensis, the primary vector of Plasmodium knowlesi in Sabah, Malaysia, is both zoophilic and anthropophilic, feeding on macaques as well as humans. It is the dominant Anopheles species found in Kudat Division where it is responsible for all the cases of P. knowlesi. However there is a paucity of basic biological and ecological information on this vector. We investigated the genetic variation of this species using the sequences of cox1 (1,383 bp) and cox2 (685 bp) to gain an insight into the population genetics and inter-population gene flow in Sabah. A total of 71 An. balabacensis were collected from seven districts constituting 14 subpopulations. A total of 17, 10 and 25 haplotypes were detected in the subpopulations respectively using the cox1, cox2 and the combined sequence. Some of the haplotypes were common among the subpopulations due to gene flow occurring between them. AMOVA showed that the genetic variation was high within subpopulations as compared to between subpopulations. Mantel test results showed that the variation between subpopulations was not due to the geographical distance between them. Furthermore, Tajima's D and Fu's Fs tests showed that An. balabacensis in Sabah is experiencing population expansion and growth. High gene flow between the subpopulations was indicated by the low genetic distance and high gene diversity in the cox1, cox2 and the combined sequence. However the population at Lipasu Lama appeared to be isolated possibly due to its higher altitude at 873 m above sea level.
    Matched MeSH terms: DNA, Mitochondrial/chemistry*
  10. Ishar SM, Parameswaran K, Masduki NS, Rus Din RD
    PMID: 31709874 DOI: 10.1080/24701394.2019.1687693
    DNA variations are alterations found in DNA sequence, occurring in both nuclear DNA and mitochondrial DNA. Variations might differ in individual following population, respectively. The aim of this study was to find variations in target sequence of mtDNA (16000-16200) to be used as marker in Malay and Chinese population. A total of 30 buccal swab samples from 20 Malay and 10 Chinese subjects were collected and preserved on FTA card. The FTA card that contained DNA sample was punched to be included into polymerase chain reaction mixture. Amplification was carried out and the products were sequenced. Sequence variations were found in both Malay and Chinese populations. A total of nine variations (16129, 16108, 16162, 16172, 16148, 16127, 16173, 16099 and 16100) were found in Malay population while a total of seven variations (16129, 16104, 16111, 16109, 16164, 16170 and 16136) were found in Chinese population. Nucleotide position 16129 was found as variation in both Malay and Chinese populations. This study implies that np 16129 can be used as a marker for Malaysian population. For further investigation, the length of the target sequence may be increased to obtain more variations that can be used as markers. This will increase the discrimination power of Malaysian population.
    Matched MeSH terms: DNA, Mitochondrial/genetics*
  11. Mat Jaafar TNA, Taylor MI, Mohd Nor SA, Bruyn M, Carvalho GR
    J Fish Biol, 2020 Feb;96(2):337-349.
    PMID: 31721192 DOI: 10.1111/jfb.14202
    We examine genetic structuring in three commercially important species of the teleost family Carangidae from Malaysian waters: yellowtail scad Atule mate, bigeye scad Selar crumenophthalmus and yellowstripe scad Selaroides leptolepis, from the Indo-Malay Archipelago. In view of their distribution across contrasting habitats, we tested the hypothesis that pelagic species display less genetic divergence compared with demersal species, due to their potential to undertake long-distance migrations in oceanic waters. To evaluate population genetic structure, we sequenced two mitochondrial (mt)DNA [650 bp of cytochrome oxidase I (coI), 450 bp of control region (CR)] and one nuclear gene (910 bp of rag1) in each species. One hundred and eighty samples from four geographical regions within the Indo-Malay Archipelago including a population of yellowtail from Kuwait were examined. Findings revealed that the extent of genetic structuring among populations in the semi-pelagic and pelagic, yellowtail and bigeye were lower than demersal yellowstripe, consistent with the hypothesis that pelagic species display less genetic divergence compared with demersal species. The yellowtail phylogeny identified three distinct clades with bootstrap values of 86%-99% in mtDNA and 63%-67% in rag1. However, in bigeye, three clades were also observed from mtDNA data while only one clade was identified in rag1 dataset. In yellowstripe, the mtDNA tree was split into three closely related clades and two clades in rag1 tree with bootstraps value of 73%-99% and 56% respectively. However, no geographic structure appears in both mtDNA and rag1 datasets. Hierarchical molecular variance analysis (AMOVA), pair wise FST comparisons and the nearest-neighbour statistic (Snn ) showed significant genetic differences among Kuwait and Indo-Malay yellowtail. Within the Indo-Malay Archipelago itself, two distinct mitochondrial lineages were detected in yellowtail suggesting potential cryptic species. Findings suggests varying degrees of genetic structuring, key information relevant to management of exploited stocks, though more rapidly evolving genetic markers should be used in future to better delimit the nature and dynamics of putative stock boundaries.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  12. Dusfour I, Linton YM, Cohuet A, Harbach RE, Baimai V, Trung HD, et al.
    J Med Entomol, 2004 May;41(3):287-95.
    PMID: 15185927
    Anopheles sundaicus s.l. is a principal malaria vector taxon on islands and along the coastal areas of Southeast Asia. It has a wide geographical distribution and exhibits a high level of ecological and behavioral variability. Study of this taxon is crucial for understanding its biology and implementing effectise vector control measures. We compared populations of An. sundaicus from Vietnam, Thailand, and Malaysian Borneo by using two mitochondrial DNA markers: cytochrome oxidase I and cytochrome b. Genetic divergence, geographic separation, and cladistic analysis of relationships revealed the presence of two cryptic species: Anopheles sundaicus s.s. on Malaysian Borneo and An. sundaicus species A in coastal areas of Thailand and Vietnam. A polymerase chain reaction (PCR) assay was developed to easily identify these two species throughout their geographic distributions. The assay was based on sequence characterized amplified region derived from random amplified polymorphic DNA. This PCR identification method needs to be validated and adapted for the recognition of other possible species in the Sundaicus Complex.
    Matched MeSH terms: DNA, Mitochondrial/genetics*
  13. Muniandy K, Tan MH, Shehnaz S, Song BK, Ayub Q, Rahman S
    Planta, 2020 Feb 01;251(2):57.
    PMID: 32008119 DOI: 10.1007/s00425-020-03349-7
    MAIN CONCLUSION: The rice leaf mitochondrial DNA is  more methylated compared to the rice grain mitochondrial DNA. The old rice leaf mitochondrial DNA has also a higher methylation level than the young rice leaf mitochondrial DNA. The presence of DNA methylation in rice organelles has not been well characterized. We have previously shown that cytosine methylation of chloroplast DNA is different between leaf and grain, and varies between young and old leaves in rice. However, the variation in cytosine methylation of mitochondrial DNA is still poorly characterized. In this study, we have investigated cytosine methylation of mitochondrial DNA in the rice grain and leaf. Based on CpG, CHG, and CHH methylation analyses, the leaf mitochondrial DNA was found to be  more methylated compared to the grain mitochondrial DNA. The methylation of the leaf mitochondrial DNA was also higher in old compared to young leaves. Differences in methylation were observed at different cytosine positions of the mitochondrial DNA between grain and leaf, although there were also positions with a similar level of high methylation in all the tissues examined. The differentially methylated cytosine positions in rice mitochondrial DNA were observed mostly in the intergenic region and in some mitochondrial-specific genes involved in ATP production, transcription, and translation. The functional importance of cytosine methylation in the life cycle of rice mitochondria is still to be determined.
    Matched MeSH terms: DNA, Mitochondrial/genetics*
  14. Matsui M, Nishikawa K, Eto K, Hossman MY
    Zoolog Sci, 2020 Feb;37(1):91-101.
    PMID: 32068378 DOI: 10.2108/zs190078
    Two lineages of stream toads in the genus Ansonia from Malaysian Borneo have long been suspected to be specifically distinct on the basis of molecular data. We assessed the taxonomic status of these lineages using morphological and additional genetic data. In mtDNA phylogeny, each lineage-one from Bario, Kelabit Highlands of Sarawak, the other from Mt. Mulu of Sarawak and the Crocker Range of Sabah-is separated from other congeners by large genetic distances, comparable with those observed between heterospecific species in the genus. These lineages are also morphologically distinguishable from other species, and are considered to represent valid, independently evolving species. We therefore describe them as A. kelabitensis sp. nov. and A. kanak sp. nov.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  15. Eamsobhana P, Yong HS, Roongruangchai K, Tungtrongchitr A, Wanachiwanawin D
    Trop Biomed, 2020 Jun 01;37(2):536-541.
    PMID: 33612820
    Two female and one male adult hookworms were recovered from a female patient in Thailand. Based on gross and microscopic morphology, the three hookworms are members of Necator americanus. Phylogenetic reconstruction based on partial NADH dehydrogenase subunit 1 (nad1) mitochondrial gene sequences shows that these hookworms belong to the same genetic lineage as N. americanus adult worm from Zhejiang, China. The male and female hookworms were genetically distinct, belonging to two different nad1-haplotypes. This is the first report targeting the nad1 gene on the identification and genetic characterization of the human hookworms originated from infected patient. The nad1 gene marker is useful for species and higher taxa differentiation of hookworms.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  16. Yong HS, Chua KO, Song SL, Liew YJ, Eamsobhana P, Chan KG
    Mol Biol Rep, 2021 Aug;48(8):6047-6056.
    PMID: 34357549 DOI: 10.1007/s11033-021-06608-2
    BACKGROUND: Tephritid fruit flies of the genus Dacus are members of the tribe Dacini, subfamily Dacinae. There are some 274 species worldwide, distributed in Africa and the Asia-Pacific. To date, only five complete mitochondrial genomes (mitogenomes) of Dacus fruit flies have been published and are available in the GenBank.

    METHODS AND RESULTS: In view of the lack of study on their mitogenome, we sequenced (by next generation sequencing) and annotated the complete mitogenome of D. vijaysegarani from Malaysia to determine its features and phylogenetic relationship. The whole mitogenome of D. vijaysegarani has identical gene order with the published mitogenomes of the genus Dacus, with 13 protein-coding genes, two rRNA genes, 22 tRNAs, a non-coding A + T rich control region, and intergenic spacer and overlap sequences. Phylogenetic analysis based on 15 mitochondrial genes (13 PCGs and two rRNA genes), reveals Dacus, Zeugodacus and Bactrocera forming a distinct clade. The genus Dacus forms a monophyletic group in the subclade containing also the Zeugodacus group; this Dacus-Zeugodacus subclade is distinct from the Bactrocera subclade. D. (Mellesis) vijaysegarani forms a lineage with D. (Mellesis) trimacula in the subcluster containing also the lineage of D. (Mellesis) conopsoides and D. (Callantra) longicornis. D. (Dacus) bivittatus and D. (Didacus) ciliatus form a distinct subcluster. Based on cox1 sequences, the Malaysia and Vietnam taxa of D. vijaysegarani may not be conspecific.

    CONCLUSIONS: Overall, the mitochondrial genome of D. vijaysegarani provided essential molecular data that could be useful for further studies for species diagnosis, evolution and phylogeny research of other tephritid fruit flies in the future.

    Matched MeSH terms: DNA, Mitochondrial/genetics
  17. Shen KN, Loh KH, Chen CH, Hsiao CD
    Mitochondrial DNA A DNA Mapp Seq Anal, 2016 11;27(6):4122-4123.
    PMID: 25585497
    In this study, the complete mitogenome sequence of the Blue-face angelfish, Pomacanthus xanthometapon (Perciformes: Pomacanthidae) has been sequenced by the next-generation sequencing method. The assembled mitogenome consisting of 16,533 bp includes 13 protein coding genes, 22 transfer RNAs, and two ribosomal RNAs genes. The overall base composition of Blue-face angelfish is 28.7% for A, 28.9% for C, 15.9% for G, 26.6% for T and show 84% identities to flame angelfish Centropyge loriculus. The complete mitogenome of the Blue-face angelfish provides essential and important DNA molecular data for further phylogeography and evolutionary analysis for marine angelfish phylogeny.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  18. Ibrahim AH, Rahman NNA, Saifuddeen SM, Baharuddin M
    Sci Eng Ethics, 2019 02;25(1):129-142.
    PMID: 29071572 DOI: 10.1007/s11948-017-9980-5
    Tri-parent baby technology is an assisted reproductive treatment which aims to minimize or eliminate maternal inheritance of mutated mitochondrial DNA (mtDNA). The technology became popular following the move by the United Kingdom in granting license to a group of researchers from the Newcastle Fertility Centre, Newcastle University to conduct research on the symptoms of defective mtDNA. This technology differs from other assisted reproductive technology because it involves the use of gamete components retrieved from three different individuals. Indirectly, it affects the preservation of lineage which is important from an Islamic point of view. This paper aims to analyze and discuss the implications of the tri-parent technology on preservation of lineage from the perspective of Maqasid al-Shari'ah based the Islamic bioethics. The analysis shows that there are a few violations of the preservation of lineage, hence the tri-parent baby technology should not be permitted.
    Matched MeSH terms: DNA, Mitochondrial*
  19. Krzemińska U, Morales HE, Greening C, Nyári ÁS, Wilson R, Song BK, et al.
    Heredity (Edinb), 2018 04;120(4):296-309.
    PMID: 29180719 DOI: 10.1038/s41437-017-0020-7
    The House Crow (Corvus splendens) is a useful study system for investigating the genetic basis of adaptations underpinning successful range expansion. The species originates from the Indian subcontinent, but has successfully spread through a variety of thermal environments across Asia, Africa and Europe. Here, population mitogenomics was used to investigate the colonisation history and to test for signals of molecular selection on the mitochondrial genome. We sequenced the mitogenomes of 89 House Crows spanning four native and five invasive populations. A Bayesian dated phylogeny, based on the 13 mitochondrial protein-coding genes, supports a mid-Pleistocene (~630,000 years ago) divergence between the most distant genetic lineages. Phylogeographic patterns suggest that northern South Asia is the likely centre of origin for the species. Codon-based analyses of selection and assessments of changes in amino acid properties provide evidence of positive selection on the ND2 and ND5 genes against a background of purifying selection across the mitogenome. Protein homology modelling suggests that four amino acid substitutions inferred to be under positive selection may modulate coupling efficiency and proton translocation mediated by OXPHOS complex I. The identified substitutions are found within native House Crow lineages and ecological niche modelling predicts suitable climatic areas for the establishment of crow populations within the invasive range. Mitogenomic patterns in the invasive range of the species are more strongly associated with introduction history than climate. We speculate that invasions of the House Crow have been facilitated by standing genetic variation that accumulated due to diversifying selection within the native range.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  20. Zakaria NNA, Okello EJ, Howes MJ, Birch-Machin MA, Bowman A
    Phytother Res, 2018 Jun;32(6):1064-1072.
    PMID: 29464849 DOI: 10.1002/ptr.6045
    The traditional practice of eating the flowers of Clitoria ternatea L. or drinking their infusion as herbal tea in some of the Asian countries is believed to promote a younger skin complexion and defend against skin aging. This study was conducted to investigate the protective effect of C. ternatea flower water extract (CTW) against hydrogen peroxide-induced cytotoxicity and ultraviolet (UV)-induced mitochondrial DNA (mtDNA) damage in human keratinocytes. The protective effect against hydrogen peroxide-induced cytotoxicity was determined by 3-(4, 5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay, and mtDNA damage induced by UV was determined by polymerase chain reaction. Preincubation of HaCaT with 100, 250, and 500 μg/ml CTW reduced cytotoxicity effects of H2 O2 compared with control (H2 O2 alone). CTW also significantly reduced mtDNA damage in UV-exposed HaCaT (p 
    Matched MeSH terms: DNA, Mitochondrial/adverse effects*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links