Displaying publications 141 - 160 of 1822 in total

Abstract:
Sort:
  1. Weng PL, Ramli R, Shamsudin MN, Cheah YK, Hamat RA
    Biomed Res Int, 2013;2013:938937.
    PMID: 23819125 DOI: 10.1155/2013/938937
    Little is known on the genetic relatedness and potential dissemination of particular enterococcal clones in Malaysia. We studied the antibiotic susceptibility profiles of Enterococcus faecium and Enterococcus faecalis and subjected them to pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). E. faecium and E. faecalis displayed 27 and 30 pulsotypes, respectively, and 10 representative E. faecium and E. faecalis isolates (five each) yielded few different sequence types (STs): ST17 (2 isolates), ST78, ST203, and ST601 for E. faecium, and ST6, ST16, ST28, ST179, and ST399 for E. faecalis. Resistance to tazobactam-piperacillin and ampicillin amongst E. faecium isolates was highly observed as compared to E. faecalis isolates. All of the isolates were sensitive to vancomycin and teicoplanin. The presence of epidemic and nosocomial strains of selected E. faecium STs: 17, 78, and 203 and E. faecalis ST6 as well as high rates of resistance to multiple antibiotics amongst E. faecium isolates is of a particular concern.
    Matched MeSH terms: Phylogeny
  2. Wen X, Huang J, Cao J, Xu J, Mi J, Wang Y, et al.
    Ecotoxicol Environ Saf, 2020 Mar 15;191:110214.
    PMID: 31968275 DOI: 10.1016/j.ecoenv.2020.110214
    Microbial remediation has the potential to inexpensively yet effectively decontaminate and restore contaminated environments, but the virulence of pathogens and risk of resistance gene transmission by microorganisms during antibiotic removal often limit its implementation. Here, a cloned tetX gene with clear evolutionary history was expressed to explore doxycycline (DOX) degradation and resistance variation during the degradation process. Phylogenetic analysis of tetX genes showed high similarity with those of pathogenic bacteria, such as Riemerella sp. and Acinetobacter sp. Successful tetX expression was performed in Escherichia coli and confirmed by SDS-PAGE and Western blot. Our results showed that 95.0 ± 1.0% of the DOX (50 mg/L) was degraded by the recombinant strain (ETD-1 with tetX) within 48 h, which was significantly higher than that for the control (38.9 ± 8.7%) and the empty plasmid bacteria (8.8 ± 5.1%) (P  0.05). The efficient and safe DOX-degrading capacity of the recombinant strain ETD-1 makes it valuable and promising for antibiotic removal in the environment.
    Matched MeSH terms: Phylogeny
  3. Wen B, Rikihisa Y, Yamamoto S, Kawabata N, Fuerst PA
    Int. J. Syst. Bacteriol., 1996 Jan;46(1):149-54.
    PMID: 8573488
    The organism designated the SF agent was originally isolated in Japan in 1962 from Stellantchasmus falcatus metacercaria parasitic on gray mullet fish. The SF agent resembles members of the genus Ehrlichia morphologically and exhibits weak antigenic cross-reactivity with Ehrlichia sennetsu. This organism causes mild clinical signs in dogs, but severe splenomegaly and lymphadenopathy in mice. This suggests that the SF agent may be similar to either Neorickettsia helminthoeca, an intracellular parasite of a fluke and the cause of salmon poisoning disease in dogs, or E. sennetsu, the causative agent of human sennetsu ehrlichiosis in Japan and Malaysia. In order to determine the phylogenetic relationship between the SF agent and other ehrlichial species, the 16S rRNA gene was amplified by the PCR and sequenced. The SF agent sequence was most closely related to the sequences of Ehrlichia risticii (level of sequence similarity, 99.1%), the causative agent of Potomac horse fever, and E. sennetsu (level of sequence similarity, 98.7%). The next most similar sequence was that of N. helminthoeca, but the level of sequence similarity was only 93.7%. E. sennetsu, E. risticii, the SF agent, and N. helminthoeca formed a distinct cluster that was separated from all other ehrlichial species. As determined by immunofluorescence labeling, antiserum against the SF agent cross-reacted strongly with E. sennetsu, E. risticii, and N. helminthoeca. When three genetically distinct ehrlichial isolates obtained from horses with Potomac horse fever were compared with the SF agent, we found that the SF agent was most closely related to Ohio isolate 081, followed by IllinoisT (T = type strain) and a Kentucky isolate. We observed strong antigenic cross-reactivities and similarities in Western blot (immunoblot) reaction profiles when we compared the SF agent, E. risticii, and E. sennetsu; however, weaker antigenic cross-reactivity was observed when the SF agent and N. helminthoeca were compared. Our results indicate that the SF agent is antigenically more closely related to E. risticii and E. sennetsu than to N. helminthoeca. The biological and antigenic characteristics and the 16S rRNA sequence data suggest that the SF agent is a new species that belongs to the genus Ehrlichia.
    Matched MeSH terms: Phylogeny
  4. Wei M, Yi P, Huang B, Naz S, Ge C, Shu-Chien AC, et al.
    PMID: 38266530 DOI: 10.1016/j.cbd.2024.101195
    Triacylglycerol (TAG) is crucial in animal energy storage and membrane biogenesis. The conversion of diacylglycerol (DAG) to triacylglycerol (TAG) is catalyzed by diacylglycerol acyltransferase enzymes (DGATs), which are encoded by genes belonging to two distinct gene families. Although arthropods are known to possess DGATs activities and utilize the glycerol-3-phosphate pathway and MAG pathway for TAG biosynthesis, the sequence characterization and evolutionary history of DGATs in arthropods remains unclear. This study aimed to comparatively evaluate genomic analyses of DGATs in 13 arthropod species and 14 outgroup species. We found that arthropods lack SOAT2 genes within the DGAT1 family, while DGAT2, MOGAT3, AWAT1, and AWAT2 were absent from in DGAT2 family. Gene structure and phylogenetic analyses revealed that DGAT1 and DGAT2 genes come from different gene families. The expression patterns of these genes were further analyzed in crustaceans, demonstrating the importance of DGAT1 in TAG biosynthesis. Additionally, we identified the DGAT1 gene in Swimming crab (P. trituberculatus) undergoes a mutually exclusive alternative splicing event in the molt stages. Our newly determined DGAT inventory data provide a more complete scenario and insights into the evolutionary dynamics and functional diversification of DGATs in arthropods.
    Matched MeSH terms: Phylogeny
  5. Wei J, Xiao Y, Liu J, Herrera-Ulloa A, Loh KH, Xu K
    Sci Data, 2024 Feb 23;11(1):234.
    PMID: 38395996 DOI: 10.1038/s41597-024-03070-0
    Pampus argenteus (Euphrasen, 1788) is one of the major fishery species in coastal China. Pampus argenteus has a highly specialized morphology, and its declining fishery resources have encouraged massive research efforts on its aquacultural biology. In this study, we reported the first high-quality chromosome-level genome of P. argenteus obtained by integrating Illumina, PacBio HiFi, and Hi-C sequencing techniques. The final size of the genome was 518.06 Mb, with contig and scaffold N50 values of 20.47 and 22.86 Mb, respectively. The sequences were anchored and oriented onto 24 pseudochromosomes based on Hi-C data corresponding to the 24-chromatid karyotype of P. argenteus. A colinear relationship was observed between the P. argenteus genome and that of a closely related species (Scomber japonicus). A total of 24,696 protein-coding genes were identified from the genome, 98.9% of which were complete BUSCOs. This report represents the first case of high-quality chromosome-level genome assembly for P. argenteus and can provide valuable information for future evolutionary, conservation, and aquacultural research.
    Matched MeSH terms: Phylogeny
  6. Wei Chiam C, Fun Chan Y, Chai Ong K, Thong Wong K, Sam IC
    J Gen Virol, 2015 Nov;96(11):3243-3254.
    PMID: 26276497 DOI: 10.1099/jgv.0.000263
    Chikungunya virus (CHIKV), an alphavirus of the family Togaviridae, causes fever, polyarthritis and rash. There are three genotypes: West African, Asian and East/Central/South African (ECSA). The latter two genotypes have caused global outbreaks in recent years. Recent ECSA CHIKV outbreaks have been associated with severe neurological disease, but it is not known if different CHIKV genotypes are associated with different neurovirulence. In this study, the neurovirulence of Asian (MY/06/37348) and ECSA (MY/08/065) strains of CHIKV isolated in Malaysia were compared. Intracerebral inoculation of either virus into suckling mice was followed by virus titration, histopathology and gene expression analysis of the harvested brains. Both strains of CHIKV replicated similarly, yet mice infected with MY/06/37348 showed higher mortality. Histopathology findings showed that both CHIKV strains spread within the brain (where CHIKV antigen was localized to astrocytes and neurons) and beyond to skeletal muscle. In MY/06/37348-infected mice, apoptosis, which is associated with neurovirulence in alphaviruses, was observed earlier in brains. Comparison of gene expression showed that a pro-apoptotic gene (eIF2αK2) was upregulated at higher levels in MY/06/37348-infected mice, while genes involved in anti-apoptosis (BIRC3), antiviral responses and central nervous system protection (including CD40, IL-10RA, MyD88 and PYCARD) were upregulated more highly in MY/08/065-infected mice. In conclusion, the higher mortality observed following MY/06/37348 infection in mice is due not to higher viral replication in the brain, but to differentially expressed genes involved in host immune responses. These findings may help to identify therapeutic strategies and biomarkers for neurological CHIKV infections.
    Matched MeSH terms: Phylogeny
  7. Wee WY, Tan TK, Jakubovics NS, Choo SW
    PLoS One, 2016;11(3):e0152682.
    PMID: 27031249 DOI: 10.1371/journal.pone.0152682
    Mycobacterium brisbanense is a member of Mycobacterium fortuitum third biovariant complex, which includes rapidly growing Mycobacterium spp. that normally inhabit soil, dust and water, and can sometimes cause respiratory tract infections in humans. We present the first whole-genome analysis of M. brisbanense UM_WWY which was isolated from a 70-year-old Malaysian patient. Molecular phylogenetic analyses confirmed the identification of this strain as M. brisbanense and showed that it has an unusually large genome compared with related mycobacteria. The large genome size of M. brisbanense UM_WWY (~7.7Mbp) is consistent with further findings that this strain has a highly variable genome structure that contains many putative horizontally transferred genomic islands and prophage. Comparative analysis showed that M. brisbanense UM_WWY is the only Mycobacterium species that possesses a complete set of genes encoding enzymes involved in the urea cycle, suggesting that this soil bacterium is able to synthesize urea for use as plant fertilizers. It is likely that M. brisbanense UM_WWY is adapted to live in soil as its primary habitat since the genome contains many genes associated with nitrogen metabolism. Nevertheless, a large number of predicted virulence genes were identified in M. brisbanense UM_WWY that are mostly shared with well-studied mycobacterial pathogens such as Mycobacterium tuberculosis and Mycobacterium abscessus. These findings are consistent with the role of M. brisbanense as an opportunistic pathogen of humans. The whole-genome study of UM_WWY has provided the basis for future work of M. brisbanense.
    Matched MeSH terms: Phylogeny*
  8. Wee WY, Dutta A, Jayaraj J, Choo SW
    PLoS One, 2019;14(4):e0214663.
    PMID: 30964891 DOI: 10.1371/journal.pone.0214663
    Mycobacterium cosmeticum is a nontuberculous Mycobacterium recovered from different water sources including household potable water and water collected at nail salon. Individual cases of this bacterium have been reported to be associated with gastrointestinal tract infections. Here we present the first whole-genome study and comparative analysis of two new clinically-derived Mycobacterium sp. UM_RHS (referred as UM_RHS after this) and Mycobacterium sp. UM_NYF (referred as UM_NYF after this) isolated from patients in Indonesia and Malaysia respectively to have a better understanding of the biological characteristic of these isolates. Both strains are likely Mycobacterium cosmeticum as supported by the evidence from molecular phylogenetic, comparative genomic and Average Nucleotide Identity (ANI) analyses. We found the presence of a considerably large number of putative virulence genes in the genomes of UM_RHS and UM_NYF. Interestingly, we also found a horizontally transferred genomic island carrying a putative dsz operon proposing that they may have potential to perform biodesulfization of dibenzothiophene (DBT) that may be effective in cost reduction and air pollution during fuel combustion. This comparative study may provide new insights into M. cosmeticum and serve as an important reference for future functional studies of this bacterial species.
    Matched MeSH terms: Phylogeny
  9. Wee WY, Dutta A, Choo SW
    PLoS One, 2017;12(3):e0172831.
    PMID: 28291784 DOI: 10.1371/journal.pone.0172831
    Mycobacteria a genus of Actinobacteria are widespread in nature ranging from soil-dwelling saprophytes to human and animal pathogens. The rate of growth has been a classifying factor for the Mycobacterium spp., dividing them into the rapid growers and the slow growers. Here we have performed a comparative genome study of mycobacterial species in order to get better understanding of their evolution, particularly to understand the distinction between the rapid and slow growers. Our study shows that the slow growers had generally gained and lost more genes compared to the rapid growers. The slow growers might haved eventually lost genes (LivFGMH operon, shaACDEFG genes and MspA porin) that could contribute to the slow growth rate of the slow growers. The genes gained and lost in mycobacteria had eventually helped these bacteria to adapt to different environments and have led to the evolution of the present day rapid and slow growers. Our results also show high number of Mycobacterium abscessus specific genes (811 genes) and some of them are associated with the known bacterial quorum sensing genes that might be important for Mycobacterium abscessus to adapt and survive in variety of unfavorable environments. Mycobacterium abscessus also does not contains genes involved in the bacterial defense system and together with the quorum sensing genes may have contributed to the high gene gain rate of Mycobacterium abscessus.
    Matched MeSH terms: Phylogeny
  10. Watts CHS, Cooper SJB, Saint KM
    Zootaxa, 2017 Nov 14;4347(3):511-532.
    PMID: 29245582 DOI: 10.11646/zootaxa.4347.3.5
    The phylogenetic relationships of 26 Australian species of Scirtes Illiger, Ora Clark and Exochomoscirtes Pic (Scirtidae) were investigated using adult morphology, particularly male and female genitalia, larval morphology and molecular data from the mitochondrial cytochrome c oxidase subunit I (COI) gene and the nuclear genes elongation factor 1-alpha (EF1- a) and topoisomerase I (TOP1). Four species of Scirtes and one of Ora from Europe, Southeast Asia and Japan were included. The genus Scirtes is shown to be paraphyletic with respect to the genera Ora and Exochomoscirtes. Australian Scirtes were shown to belong to four species groups: Scirtes elegans group (Yoshitomi 2009); S. helmsi group (Watts 2004); S. japonicus group (Nyholm 2002); and S. haemisphaericus group (Yoshitomi 2005). The prehensor and bursal sclerite of 15 species are illustrated as well as habitus illustrations of S. zwicki sp. nov. and S. albamaculatus Watts. Three new species from Australia are described: Scirtes lynnae, S. zwicki and S. serratus spp. nov. Scirtes nehouensis Ruta & Yoshitomi 2010 is synonymised with S. emmaae Watts 2004. Scirtes pygmaeus Watts, 2004 is synonymised with S. pinjarraensis Watts, 2006. Scirtes rutai nom. nov. is proposed as a replacement name for S. beccus Ruta, Kiałka & Yoshitomi, 2014 from Sabah as it is preoccupied by S. beccus Watts, 2004 from Australia.
    Matched MeSH terms: Phylogeny
  11. Wassermann M, Raisch L, Lyons JA, Natusch DJD, Richter S, Wirth M, et al.
    PLoS One, 2017;12(11):e0187984.
    PMID: 29131856 DOI: 10.1371/journal.pone.0187984
    We examined Sarcocystis spp. in giant snakes from the Indo-Australian Archipelago and Australia using a combination of morphological (size of sporocyst) and molecular analyses. We amplified by PCR nuclear 18S rDNA from single sporocysts in order to detect mixed infections and unequivocally assign the retrieved sequences to the corresponding parasite stage. Sarcocystis infection was generally high across the study area, with 78 (68%) of 115 examined pythons being infected by one or more Sarcocystis spp. Among 18 randomly chosen, sporocyst-positive samples (11 from Southeast Asia, 7 from Northern Australia) the only Sarcocystis species detected in Southeast Asian snakes was S. singaporensis (in reticulated pythons), which was absent from all Australian samples. We distinguished three different Sarcocystis spp. in the Australian sample set; two were excreted by scrub pythons and one by the spotted python. The sequence of the latter is an undescribed species phylogenetically related to S. lacertae. Of the two Sarcocystis species found in scrub pythons, one showed an 18S rRNA gene sequence similar to S. zamani, which is described from Australia for the first time. The second sequence was identical/similar to that of S. nesbitti, a known human pathogen that was held responsible for outbreaks of disease among tourists in Malaysia. The potential presence of S. nesbitti in Australia challenges the current hypothesis of a snake-primate life cycle, and would have implications for human health in the region. Further molecular and biological characterizations are required to confirm species identity and determine whether or not the Australian isolate has the same zoonotic potential as its Malaysian counterpart. Finally, the absence of S. nesbitti in samples from reticulated pythons (which were reported to be definitive hosts), coupled with our phylogenetic analyses, suggest that alternative snake hosts may be responsible for transmitting this parasite in Malaysia.
    Matched MeSH terms: Phylogeny
  12. Wasitthankasem R, Vongpunsawad S, Siripon N, Suya C, Chulothok P, Chaiear K, et al.
    PLoS One, 2015;10(5):e0126764.
    PMID: 25962112 DOI: 10.1371/journal.pone.0126764
    The majority of hepatitis C virus (HCV) infection results in chronic infection, which can lead to liver cirrhosis and hepatocellular carcinoma. Global burden of hepatitis C virus (HCV) is estimated at 150 million individuals, or 3% of the world's population. The distribution of the seven major genotypes of HCV varies with geographical regions. Since Asia has a high incidence of HCV, we assessed the distribution of HCV genotypes in Thailand and Southeast Asia. From 588 HCV-positive samples obtained throughout Thailand, we characterized the HCV 5' untranslated region, Core, and NS5B regions by nested PCR. Nucleotide sequences obtained from both the Core and NS5B of these isolates were subjected to phylogenetic analysis, and genotypes were assigned using published reference genotypes. Results were compared to the epidemiological data of HCV genotypes identified within Southeast Asian. Among the HCV subtypes characterized in the Thai samples, subtype 3a was the most predominant (36.4%), followed by 1a (19.9%), 1b (12.6%), 3b (9.7%) and 2a (0.5%). While genotype 1 was prevalent throughout Thailand (27-36%), genotype 3 was more common in the south. Genotype 6 (20.9%) constituted subtype 6f (7.8%), 6n (7.7%), 6i (3.4%), 6j and 6m (0.7% each), 6c (0.3%), 6v and 6xa (0.2% each) and its prevalence was significantly lower in southern Thailand compared to the north and northeast (p = 0.027 and p = 0.030, respectively). Within Southeast Asia, high prevalence of genotype 6 occurred in northern countries such as Myanmar, Laos, and Vietnam, while genotype 3 was prevalent in Thailand and Malaysia. Island nations of Singapore, Indonesia and Philippines demonstrated prevalence of genotype 1. This study further provides regional HCV genotype information that may be useful in fostering sound public health policy and tracking future patterns of HCV spread.
    Matched MeSH terms: Phylogeny
  13. Wardhana AH, Hall MJ, Mahamdallie SS, Muharsini S, Cameron MM, Ready PD
    Int J Parasitol, 2012 Jul;42(8):729-38.
    PMID: 22664061 DOI: 10.1016/j.ijpara.2012.04.017
    Phylogenetic, genealogical and population relationships of Chrysomya bezziana, the Old World screwworm fly (OWSF), were inferred from DNA sequences of mitochondrial cytochrome b (cyt b), nuclear elongation factor-1α (EF-1α) and nuclear white eye colour (white), using sequences of Chrysomya megacephala and Chrysomya rufifacies as outgroups. Cyt b (717bp, 754 specimens), EF-1α (361bp, 256 specimens) and white (577bp, 242 specimens) were analysed from up to two African and nine Asian countries, including 10 Indonesian islands. We show that OWSF occurs as distinctive African and Asian lineages based on cyt b and white, and that there is a marked differentiation between Sumatran and Javan populations in Indonesia, supported by the genealogy and analysis of molecular variance of cyt b alone. Four cyt b sub-lineages are recognised in Asia: only 2.1 occurs on the Asian mainland, from Yemen to Peninsular Malaysia; only 2.2, 2.3 and 2.4 occur in central Indonesia; 2.4 predominates on New Guinea; and 2.1 co-occurs with others only on Sumatra in western Indonesia. This phylogeography and the genetic distances between cyt b haplotypes indicate pre-historic, natural dispersal of OWSF eastwards into Indonesia and other Malesian islands, followed by vicariant evolution in New Guinea and central Indonesia. OWSF is absent from Australia, where there is surveillance for importation or natural invasion. Judged by cyt b haplotype markers, there is currently little spread of OWSF across sea barriers, despite frequent shipments of Australian livestock through Indonesian seas to the Middle East Gulf region. These findings will inform plans for integrated pest management, which could be applied progressively, for example starting in East Nusa Tenggara (central Indonesia) where OWSF has regional cyt b markers, and progressing westwards to Java where any invasion from Sumatra is unlikely. Cyt b markers would help identify the source of any re-emergence in treated areas.
    Matched MeSH terms: Phylogeny*
  14. Wangchuk S, Matsumoto T, Iha H, Ahmed K
    PLoS One, 2017;12(9):e0184826.
    PMID: 28910371 DOI: 10.1371/journal.pone.0184826
    BACKGROUND: Diarrhea is a major cause of morbidity and mortality among Bhutanese children. The etiology of diarrhea is not well known due to the challenges of conducting routine surveillance with Bhutan's modest research facilities. Establishing an etiology is crucial toward generating evidence that will contribute to policy discussions on a diarrheal disease control program. Our previous study, during 2010-2012, revealed that norovirus (NoV) is an important cause of diarrhea among Bhutanese children, and that GII.21 was the major genotype circulating at that time. In other countries, GII.4 is the major genotype responsible for NoV infections. In this update report, we provide new prevalence data to describe the progression of the transformation and distribution of the NoV genotype among Bhutanese children.

    METHODS: From June 2013 through May 2014, diarrheal stool samples were collected at one national referral hospital in Thimphu, two regional referral hospitals in the eastern and central regions, and one general hospital in the western region of Bhutan. NoV was detected by reverse transcription-polymerase chain reaction (RT-PCR), by amplifying the capsid gene. The RT-PCR results were confirmed by nucleotide sequencing of the amplicons.

    RESULTS: The proportion of NoV-positive stool samples was 23.6% (147/623), of which 76.9% were NoV GII and the remainders were NoV GI. The median age of infected children was 15.5 months, with a fairly balanced female: male ratio. NoV GII was most prevalent in the colder months (late November-mid April) and NoV GI had the highest prevalence in the summer (mid April-late September). Nucleotide sequencing was successful in 99 samples of GII strains. The most common genotypes were GII.3 (42.6%), GII.4 Sydney 2012 (15.8%), and GII.4 unassigned (11.9%). No GII.21 was found in any child in the present study. Phylogenetic analysis showed that GII.3 strains in the present study belonged to an independent cluster in lineage B. These strains shared an ancestor with those from different countries and Bhutanese strains circulating during 2010.

    CONCLUSION: NoV remains an important cause of diarrhea among Bhutanese children. Genotype GII.3 from a single ancestor strain has spread, replacing the previously circulating GII.21. Current NoV genotypes are similar to the strains circulating worldwide but are primarily related to those in neighboring countries. NoV GII is prevalent during the cold season, while GI is prevalent during the summer. To develop a NoV infection control policy, further studies are needed.

    Matched MeSH terms: Phylogeny
  15. Wang Z, Huang S, Jia C, Liu J, Zhang J, Xu B, et al.
    Plant Cell Rep, 2013 Sep;32(9):1373-80.
    PMID: 23652818 DOI: 10.1007/s00299-013-1449-7
    KEY MESSAGE: Three tau class MaGSTs responded to abiotic stress, MaGSTF1 and MaGSTL1 responded to signaling molecules, they may play an important role in the growth of banana plantlet. Glutathione S-transferases (GST) are multifunctional detoxification enzymes that participate in a variety of cellular processes, including stress responses. In this study, we report the molecular characteristics of five GST genes (MaGSTU1, MaGSTU2, MaGSTU3, MaGSTF1 and MaGSTL1) cloned from banana (Musa acuminate L. AAA group, cv. Cavendish) using a RACE-PCR-based strategy. The predicted molecular masses of these GSTs range from 23.4 to 27.7 kDa and their pIs are acidic. At the amino acid level, they share high sequence similarity with GSTs in the banana DH-Pahang (AA group) genome. Phylogenetic analysis showed that the deduced amino acid sequences of MaGSTs also have high similarity to GSTs of other plant species. Expression analysis by semi-quantitative RT-PCR revealed that these genes are differentially expressed in various tissues. In addition, their expression is regulated by various stress conditions, including exposure to signaling molecules, cold, salinity, drought and Fusarium oxysporum f specialis(f. Sp) cubense Tropical Race 4 (Foc TR4) infection. The expression of the tau class MaGSTs (MaGSTU1, MaGSTU2 and MaGSTU3) mainly responded to cold, salinity and drought while MaGSTF1 and MaGSTL1 expressions were upregulated by signaling molecules. Our findings suggest that MaGSTs play a key role in both development and abiotic stress responses.
    Matched MeSH terms: Phylogeny
  16. Wang Z, Zhang F, Liang Y, Zheng K, Gu C, Zhang W, et al.
    Microbiol Spectr, 2021 10 31;9(2):e0046321.
    PMID: 34643440 DOI: 10.1128/Spectrum.00463-21
    Alteromonas is a ubiquitous, abundant, copiotrophic and phytoplankton-associated marine member of the Gammaproteobacteria with a range extending from tropical waters to polar regions and including hadal zones. Here, we describe a novel Alteromonas phage, ZP6, that was isolated from surface coastal waters of Qingdao, China. ZP6 contains a linear, double-stranded, 38,080-bp DNA molecule with 50.1% G+C content and 47 putative open reading frames (ORFs). Three auxiliary metabolic genes were identified, encoding metal-dependent phosphohydrolase, diaminopurine synthetase, and nucleotide pyrophosphohydrolase. The first two ORFs facilitate the replacement of adenine (A) by diaminopurine (Z) in phage genomes and help phages to evade attack from host restriction enzymes. The nucleotide pyrophosphohydrolase enables the host cells to stop programmed cell death and improves the survival rate of the host in a nutrient-depleted environment. Phylogenetic analysis based on the amino acid sequences of whole genomes and comparative genomic analysis revealed that ZP6 is most closely related to Enhodamvirus but with low similarity (shared genes, <30%, and average nucleotide sequence identity, <65%); it is distinct from other bacteriophages. Together, these results suggest that ZP6 could represent a novel viral genus, here named Mareflavirus. Combining its ability to infect Alteromonas, its harboring of a diaminopurine genome-biosynthetic system, and its representativeness of an understudied viral group, ZP6 could be an important and novel model system for marine virus research. IMPORTANCE Alteromonas is an important symbiotic bacterium of phytoplankton, but research on its bacteriophages is still at an elementary level. Our isolation and genome characterization of a novel Alteromonas podovirus, ZP6, identified a new viral genus of podovirus, namely, Mareflavirus. The ZP6 genome, with a diaminopurine genome-biosynthetic system, is different from those of other isolated Alteromonas phages and will bring new impetus to the development of virus classification and provide important insights into novel viral sequences from metagenomic data sets.
    Matched MeSH terms: Phylogeny
  17. Wang YJ, Zeng QG, Xu LN
    Genet. Mol. Res., 2013;12(2):892-900.
    PMID: 23613236 DOI: 10.4238/2013.April.2.6
    The blood clam, Tegillarca granosa, is widely cultivated in China. We isolated 6 microsatellite loci from T. granosa and used them to investigate genetic diversity and population structure of 5 widely distributed populations of blood clam collected from eastern and southeastern China. The allele number per locus varied from 4 to 9, and the polymorphism information content value was 0.301 to 0.830. The mean observed and expected heterozygosities varied from 0.304 to 0.460 and 0.556 to 0.621, respectively; the population from Yueqing had the smallest observed heterozygosity. In the neighbor-joining tree, Shandong, Fenghua and Yueqing populations clustered together, and there was geographic divergence between Shandong and Guangxi populations. Some microsatellite loci that were isolated from these mainland China samples were not found in blood clams collected from Malaysia.
    Matched MeSH terms: Phylogeny
  18. Wang X, Xie Y, Zhou X
    Virus Genes, 2004 Dec;29(3):303-9.
    PMID: 15550769
    Six papaya samples showing downward leaf curling were collected in Guangdong and Guangxi provinces, China. The result of TAS-ELISA showed they were all infected by geminiviruses. Comparison of partial DNA-A sequences reveals that these virus isolates can be classified into two groups. Group I includes isolates G2, G4, G5, G28 and G29 from Guangxi province, while isolate GD2 from Guangdong province belongs to Group II. The complete DNA-A sequence of G2 and GD2 were characterized. Sequence comparisons showed that the DNA-A of G2 and GD2 were most closely related to that of Ageratum yellow vein China virus- [Hn2] and Ageratum yellow vein virus , respectively, with 83.4 and 75.2% nucleotide sequence identity, while DNA-A sequence between G2 and GD2 had only 73.4% sequence identity. The molecular data suggests that G2 and GD2 are two distinct begomoviruses, for which the name Papaya leaf curl China virus (PaLCuCNV) for G2 and Papaya leaf curl Guangdong virus (PaLCuGDV) for GD2 are proposed. Comparison of individual encoded proteins showed the coat protein of G2 and GD2 shared highest amino acid sequence identity (97.7 and 94.2%, respectively) with that of Pepper leaf curl virus -[Malaysia] (PepLCV-[MY]), suggesting the CP of these viruses may have identical ancestor.
    Matched MeSH terms: Phylogeny
  19. Wang S, Su M, Hu X, Wang X, Han Q, Yu Q, et al.
    FEMS Microbiol Lett, 2024 Jan 09;371.
    PMID: 38124623 DOI: 10.1093/femsle/fnad135
    Invertebrates such as termites feeding on nutrient-poor substrate receive essential nitrogen by biological nitrogen fixation of gut diazotrophs. However, the diversity and composition of gut diazotrophs of vertebrates such as Plateau pikas living in nutrient-poor Qinghai-Tibet Plateau remain unknown. To fill this knowledge gap, we studied gut diazotrophs of Plateau pikas (Ochotona curzoniae) and its related species, Daurian pikas (Ochotona daurica), Hares (Lepus europaeus) and Rabbits (Oryctolagus cuniculus) by high-throughput amplicon sequencing methods. We analyzed whether the gut diazotrophs of Plateau pikas are affected by season, altitude, and species, and explored the relationship between gut diazotrophs and whole gut microbiomes. Our study showed that Firmicutes, Spirochaetes, and Euryarchaeota were the dominant gut diazotrophs of Plateau pikas. The beta diversity of gut diazotrophs of Plateau pikas was significantly different from the other three lagomorphs, but the alpha diversity did not show a significant difference among the four lagomorphs. The gut diazotrophs of Plateau pikas were the most similarly to that of Rabbits, followed by Daurian pikas and Hares, which was inconsistent with gut microbiomes or animal phylogeny. The dominant gut diazotrophs of the four lagomorphs may reflect their living environment and dietary habits. Season significantly affected the alpha diversity and abundance of dominant gut diazotrophs. Altitude had no significant effect on the gut diazotrophs of Plateau pikas. In addition, the congruence between gut microbiomes and gut diazotrophs was low. Our results proved that the gut of Plateau pikas was rich in gut diazotrophs, which is of great significance for the study of ecology and evolution of lagomorphs.
    Matched MeSH terms: Phylogeny
  20. Wang LY, Wang YS, Cheng H, Zhang JP, Yeok FS
    Ecotoxicology, 2015 Oct;24(7-8):1705-13.
    PMID: 26044931 DOI: 10.1007/s10646-015-1502-0
    Chitinases in terrestrial plants have been reported these are involved in heavy metal tolerance/detoxification. This is the first attempt to reveal chitinase gene (AcCHI I) and its function on metal detoxification in mangroves Aegiceras corniculatum. RT-PCR and RACE techniques were used to clone AcCHI I, while real-time quantitative PCR was employed to assess AcCHI I mRNA expressions in response to Cadmium (Cd). The deduced AcCHI I protein consists of 316 amino acids, including a signal peptide region, a chitin-binding domain (CBD) and a catalytic domain. Protein homology modeling was performed to identify potential features in AcCHI I. The CBD structure of AcCHI I might be critical for metal tolerance/homeostasis of the plant. Clear tissue-specific differences in AcCHI I expression were detected, with higher transcript levels detected in leaves. Results demonstrated that a short duration of Cd exposure (e.g., 3 days) promoted AcCHI I expression in roots. Upregulated expression was also detected in leaves under 10 mg/kg Cd concentration stress. The present study demonstrates that AcCHI I may play an important role in Cd tolerance/homeostasis in the plant. Further studies of the AcCHI I protein, gene overexpression, the promoter and upstream regulation will be necessary for clarifying the functions of AcCHI I.
    Matched MeSH terms: Phylogeny
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links