Displaying publications 161 - 180 of 319 in total

Abstract:
Sort:
  1. Hamood Altowayti WA, Almoalemi H, Shahir S, Othman N
    Ecotoxicol Environ Saf, 2020 Dec 01;205:111267.
    PMID: 32992213 DOI: 10.1016/j.ecoenv.2020.111267
    Arsenic is a common contaminant in gold mine soil and tailings. Microbes present an opportunity for bio-treatment of arsenic, since it is a sustainable and cost-effective approach to remove arsenic from water. However, the development of existing bio-treatment approaches depends on isolation of arsenic-resistant microbes from arsenic contaminated samples. Microbial cultures are commonly used in bio-treatment; however, it is not established whether the structure of the cultured isolates resembles the native microbial community from arsenic-contaminated soil. In this milieu, a culture-independent approach using Illumina sequencing technology was used to profile the microbial community in situ. This was coupled with a culture-dependent technique, that is, isolation using two different growth media, to analyse the microbial population in arsenic laden tailing dam sludge based on the culture-independent sequencing approach, 4 phyla and 8 genera were identified in a sample from the arsenic-rich gold mine. Firmicutes (92.23%) was the dominant phylum, followed by Proteobacteria (3.21%), Actinobacteria (2.41%), and Bacteroidetes (1.49%). The identified genera included Staphylococcus (89.8%), Pseudomonas (1.25), Corynebacterium (0.82), Prevotella (0.54%), Megamonas (0.38%) and Sphingomonas (0.36%). The Shannon index value (3.05) and Simpson index value (0.1661) indicated low diversity in arsenic laden tailing. The culture dependent method exposed significant similarities with culture independent methods at the phylum level with Firmicutes, Proteobacteria and Actinobacteria, being common, and Firmicutes was the dominant phylum whereas, at the genus level, only Pseudomonas was presented by both methods. It showed high similarities between culture independent and dependent methods at the phylum level and large differences at the genus level, highlighting the complementarity between the two methods for identification of the native population bacteria in arsenic-rich mine. As a result, the present study can be a resource on microbes for bio-treatment of arsenic in mining waste.
    Matched MeSH terms: Drug Resistance, Bacterial/drug effects
  2. Fauzia KA, Miftahussurur M, Syam AF, Waskito LA, Doohan D, Rezkitha YAA, et al.
    Toxins (Basel), 2020 07 24;12(8).
    PMID: 32722296 DOI: 10.3390/toxins12080473
    We evaluated biofilm formation of clinical Helicobacter pylori isolates from Indonesia and its relation to antibiotic resistance. We determined the minimum inhibition concentration (MIC) of amoxicillin, clarithromycin, levofloxacin, metronidazole and tetracycline by the Etest to measure the planktonic susceptibility of 101 H. pylori strains. Biofilms were quantified by the crystal violet method. The minimum biofilm eradication concentration (MBEC) was obtained by measuring the survival of bacteria in a biofilm after exposure to antibiotics. The majority of the strains formed a biofilm (93.1% (94/101)), including weak (75.5%) and strong (24.5%) biofilm-formers. Planktonic resistant and sensitive strains produced relatively equal amounts of biofilms. The resistance proportion, shown by the MBEC measurement, was higher in the strong biofilm group for all antibiotics compared to the weak biofilm group, especially for clarithromycin (p = 0.002). Several cases showed sensitivity by the MIC measurement, but resistance according to the MBEC measurements (amoxicillin, 47.6%; tetracycline, 57.1%; clarithromycin, 19.0%; levofloxacin, 38.1%; and metronidazole 38.1%). Thus, biofilm formation may increase the survival of H. pylori and its resistance to antibiotics. Biofilm-related antibiotic resistance should be evaluated with antibiotic susceptibility.
    Matched MeSH terms: Drug Resistance, Bacterial*
  3. Lim KT, Hanifah YA, Mohd Yusof MY, Thong KL
    Jpn J Infect Dis, 2010 Jul;63(4):286-9.
    PMID: 20657072
    Mupirocin is used topically to treat skin infection caused by methicillin-resistant Staphylococcus aureus (MRSA). One hundred eighty-eight strains (isolated in 2003, 2004, 2007, and 2008) were tested for mupirocin susceptibility using disk diffusion method and minimum inhibitory concentration (MIC). Mupirocin resistance was detected in 10 (5%) strains with 2 of them showing MIC of 256 mg/l. PCR detection using gene-specific primers showed that all 10 mupirocin-resistant strains harbored ileS2 gene whereas mupA gene was detected in 2 mupirocin-resistant strains with MIC of 256 mg/l. Amplification of agr grouping and SCCmec typing showed that all 10 strains were agr group I and SCCmec type III. Sequence analysis of region X of the spa gene yielded 4 distinct spa types (t037, t363, t421, and t6405) which were clonally related. In conclusion, the rate of mupirocin resistance in Malaysia is still low but is much higher than previous reports in Malaysia.
    Matched MeSH terms: Drug Resistance, Bacterial*
  4. Elghaieb H, Tedim AP, Abbassi MS, Novais C, Duarte B, Hassen A, et al.
    J Antimicrob Chemother, 2020 01 01;75(1):30-35.
    PMID: 31605129 DOI: 10.1093/jac/dkz419
    OBJECTIVES: Increasing numbers of linezolid-resistant Enterococcus carrying optrA are being reported across different niches worldwide. We aimed to characterize the first optrA-carrying Enterococcus faecalis obtained from food-producing animals and retail meat samples in Tunisia.

    METHODS: Seven optrA-carrying E. faecalis obtained from chicken faeces (n=3, August 2017) and retail chicken meat (n=4, August 2017) in Tunisia were analysed. Antimicrobial susceptibility was determined by disc diffusion, broth microdilution and Etest against 13 antibiotics, linezolid and tedizolid, respectively (EUCAST/CLSI). optrA stability (∼600 bacterial generations), transfer (filter mating) and location (S1-PFGE/hybridization) were characterized. WGS (Illumina-HiSeq) was done for four representatives that were analysed through in silico and genomic mapping tools.

    RESULTS: Four MDR clones carrying different virulence genes were identified in chicken faeces (ST476) and retail meat (the same ST476 clone plus ST21 and ST859) samples. MICs of linezolid and tedizolid were stably maintained at 8 and 1-2 mg/L, respectively. optrA was located in the same transferable chromosomal Tn6674-like element in ST476 and ST21 clones, similar to isolates from pigs in Malaysia and humans in China. ST859 carried a non-conjugative plasmid of ∼40 kb with an impB-fexA-optrA segment, similar to plasmids from pigs and humans in China.

    CONCLUSIONS: The same chromosomal and transferable Tn6674-like element was identified in different E. faecalis clones from humans and animals. The finding of retail meat contaminated with the same linezolid-resistant E. faecalis strain obtained from a food-producing animal highlights the potential role of the food chain in the worrisome dissemination of optrA that can be stably maintained without selective pressure over generations.

    Matched MeSH terms: Drug Resistance, Bacterial/genetics
  5. Malchione MD, Torres LM, Hartley DM, Koch M, Goodman JL
    Int J Antimicrob Agents, 2019 Oct;54(4):381-399.
    PMID: 31369812 DOI: 10.1016/j.ijantimicag.2019.07.019
    Carbapenem-resistant Enterobacteriaceae infections have spread globally, leaving polymyxins, including colistin, as 'last-resort treatments'. Emerging colistin resistance raises the spectre of untreatable infections. Despite this threat, data remain limited for much of the world, including Southeast Asia where only 3 of 11 nations submitted data on carbapenem and colistin resistance for recent World Health Organization (WHO) reports. To improve our understanding of the challenge, we utilised broad strategies to search for and analyse data on carbapenem and colistin resistance among Escherichia coli and Klebsiella in Southeast Asia. We found 258 studies containing 526 unique reports and document carbapenem-resistant E. coli and Klebsiella in 8 and 9 of 11 nations, respectively. We estimated carbapenem resistance proportions through meta-analysis of extracted data for nations with ≥100 representative isolates. Estimated resistance among Klebsiella was high (>5%) in four nations (Indonesia, Philippines, Thailand and Vietnam), moderate (1-5%) in two nations (Malaysia and Singapore) and low (<1%) in two nations (Cambodia and Brunei). For E. coli, resistance was generally lower but was high in two of seven nations with ≥100 isolates (Indonesia and Myanmar). The most common carbapenemases were NDM metallo-β-lactamases and OXA β-lactamases. Despite sparse data, polymyxin resistance was documented in 8 of 11 nations, with mcr-1 being the predominant genotype. Widespread presence of carbapenem and polymyxin resistance, including their overlap in eight nations, represents a continuing risk and increases the threat of infections resistant to both classes. These findings, and remaining data gaps, highlight the urgent need for sufficiently-resourced robust antimicrobial resistance surveillance.
    Matched MeSH terms: Drug Resistance, Bacterial*
  6. Alfizah H, Norazah A, Hamizah R, Ramelah M
    J Med Microbiol, 2014 May;63(Pt 5):703-709.
    PMID: 24757218 DOI: 10.1099/jmm.0.069781-0
    Antibiotic resistance is increasing worldwide, and it has been regarded as the main factor reducing the efficacy of Helicobacter pylori therapy. The aim of this study was to determine the phenotype and genotype of antibiotic-resistant strains of H. pylori in the Malaysian population and to evaluate the impact of antibiotic resistance to eradication outcome. One hundred and sixty-one H. pylori isolates were analysed in this study. Metronidazole, clarithromycin, fluoroquinolone, amoxicillin and tetracycline susceptibilities were determined by Etest. PCR followed by DNA sequencing was carried out to determine mutations. The medical records of the patients infected with resistant strains were reviewed to determine the eradication outcome. Metronidazole resistance was encountered in 36.6 % of H. pylori isolates, whereas clarithromycin and fluoroquinolone resistance was observed in 1.2  and 1.9 % of isolates, respectively. All strains tested were susceptible to amoxicillin and tetracycline. Frameshift and nonsense mutations in rdxA and frxA genes resulting in stop codons contributed to metronidazole resistance, which leads to reduced eradication efficacy. A2142G and A2143G mutations of 23S rRNA were identified as causing failure of the eradication therapy. Mutation at either codon 87 or 91 of the gyrA gene was identified in fluoroquinolone-resistant strains. However, the effect of resistance could not be assessed. This study showed that frameshift and nonsense mutations in rdxA or frxA genes and point mutations in the 23S rRNA affected the efficacy of H. pylori eradication therapy.
    Matched MeSH terms: Drug Resistance, Bacterial*
  7. Low WL, Kenward K, Britland ST, Amin MC, Martin C
    Int Wound J, 2017 Apr;14(2):369-384.
    PMID: 27146784 DOI: 10.1111/iwj.12611
    The increasing occurrence of hospital-acquired infections and the emerging problems posed by antibiotic-resistant microbial strains have both contributed to the escalating cost of treatment. The presence of infection at the wound site can potentially stall the healing process at the inflammatory stage, leading to the development of a chronic wound. Traditional wound treatment regimes can no longer cope with the complications posed by antibiotic-resistant strains; hence, there is a need to explore the use of alternative antimicrobial agents. Pre-antibiotic compounds, including heavy metal ions and essential oils, have been re-investigated for their potential use as effective antimicrobial agents. Essential oils have potent antimicrobial, antifungal, antiviral, anti-inflammatory, antioxidant and other beneficial therapeutic properties. Similarly, heavy metal ions have also been used as disinfecting agents because of their broad spectrum activities. Both of these alternative antimicrobials interact with many different intracellular components, thereby resulting in the disruption of vital cell functions and eventually cell death. This review will discuss the application of essential oils and heavy metal ions, particularly tea tree oil and silver ions, as alternative antimicrobial agents for the treatment of chronic, infected wounds.
    Matched MeSH terms: Drug Resistance, Bacterial/drug effects
  8. Mohd-Zain Z, Kamsani NH, Ahmad N
    Trop Biomed, 2013 Dec;30(4):584-90.
    PMID: 24522126 MyJurnal
    In the last few decades, co-trimoxazole (SXT), an antibacterial combination of trimethoprim and sulfamethoxazole, has been used for treatment of upper respiratory tract infection due to Haemophilus influenzae. The usage of this antibiotic has become less important due to emergence of SXT-resistant strains worldwide. Most reports associate SXT resistance to the presence of variants of dihydrofolate reductase (DHFR) dfrA genes which are responsible for trimethoprim resistance; while the sulfamethoxazole (SMX) resistance are due to sulfonamide (SUL) genes sul1 and sul2 and/or mutation in the chromosomal (folP) gene encoding dihydropteroate synthetase (DHPS). This study aims to detect and analyse the genes that are involved in SXT resistance in H. influenzae strains that were isolated in Malaysia. Primers targeting for variants of dfrA, fol and sul genes were used to amplify the genes in nine SXT-resistant strains. The products of amplification were sequenced and multiple alignments of the assembled sequences of the local strains were compared to the sequences of other H. influenzae strains in the Genbank. Of the five variants of the dhfA genes, dfrA1 was detected in three out of the nine strains. In contrast to intermediate strains, at least one variant of folP genes was detected in the resistant strains. Multiple nucleotide alignment of this gene revealed that strain H152 was genetically different from the others due to a 15-bp nucleotide insert in folP gene. The sequence of the insert was similar to the insert in folP of H. influenzae strain A12, a strain isolated in United Kingdom. None of the strains had sul1 gene but sul2 gene was detected in four strains. Preliminary study on the limited number of samples shows that the TMP resistance was attributed to mainly to dfrA1 and the SMX was due to folP genes. Presence of sul2 in addition to folP in seven strains apparently had increased their level of resistance. A strain that lacked sul1 or sul2 gene, its resistance to sulfonamide was attributed to a 15-bp DNA insert in the folP gene.
    Matched MeSH terms: Drug Resistance, Bacterial*
  9. Liew FY, Tay ST, Puthucheary SD
    Trop Biomed, 2011 Dec;28(3):646-50.
    PMID: 22433895 MyJurnal
    Ciprofloxacin, a quinolone with good intracellular penetration may possibly be used for treatment of melioidosis caused by Burkholderia pseudomallei, but problems with resistance may be encountered. Amino acid substitutions in gyrA/gyrB have given rise to fluoroquinolone resistance in various microorganisms. Using published primers for gyrA and gyrB, PCR was performed on 11 isolates of B. pseudomallei with varying degrees of sensitivity to ciprofloxacin, followed by DNA sequencing to detect possible mutations. Results showed an absence of any point mutation in either gene. Local isolates have yet to develop full resistance to ciprofloxacin and probably other mechanisms of resistance may have been involved in the decreased sensitivity to ciprofloxacin.
    Matched MeSH terms: Drug Resistance, Bacterial*
  10. Ding CH, Ismail Z, Sulong A, Wahab AA, Gan B, Mustakim S, et al.
    Malays J Pathol, 2020 Dec;42(3):401-407.
    PMID: 33361721
    INTRODUCTION: Rifampicin is a key first-line antimycobacterial agent employed for the treatment of pulmonary tuberculosis (PTB). This study sought to obtain prevalence data on rifampicin-resistant Mycobacterium tuberculosis among smear-positive PTB patients in the Klang District of Malaysia.

    MATERIALS AND METHODS: A total of 103 patients from the Chest Clinic of Hospital Tengku Ampuan Rahimah with sputum smears positive for acid-fast bacilli were included in this cross-sectional study. All sputa were tested using Xpert MTB/RIF to confirm the presence of M. tuberculosis complex and detect rifampicin resistance. Sputa were also sent to a respiratory medicine institute for mycobacterial culture. Positive cultures were then submitted to a reference laboratory, where isolates identified as M. tuberculosis complex underwent drug susceptibility testing (DST).

    RESULTS: A total of 58 (56.3%) patients were newly diagnosed and 45 (43.7%) patients were previously treated. Xpert MTB/RIF was able to detect rifampicin resistance with a sensitivity and specificity of 87.5% and 98.9%, respectively. Assuming that a single resistant result from Xpert MTB/RIF or any DST method was sufficient to denote resistance, a total of 8/103 patients had rifampicinresistant M. tuberculosis. All eight patients were previously treated for PTB (p<0.05). The overall prevalence of rifampicin resistance among smear-positive PTB patients was 7.8%, although it was 17.8% among the previously treated ones.

    CONCLUSION: The local prevalence of rifampicin-resistant M. tuberculosis was particularly high among previously treated patients. Xpert MTB/RIF can be employed in urban district health facilities not only to diagnose PTB in smear-positive patients, but also to detect rifampicin resistance with good sensitivity and specificity.

    Matched MeSH terms: Drug Resistance, Bacterial*
  11. Ahmad N, Khan AH, Syed Sulaiman SA, Javaid A
    Int J Mycobacteriol, 2015 09;4(3):258-9.
    PMID: 27649876 DOI: 10.1016/j.ijmyco.2015.05.012
    Matched MeSH terms: Drug Resistance, Bacterial/drug effects*
  12. Odeyemi OA, Ahmad A
    Microb Pathog, 2017 Feb;103:178-185.
    PMID: 28062284 DOI: 10.1016/j.micpath.2017.01.007
    This study aimed to compare population dynamics, antibiotic resistance and biofilm formation of Aeromonas and Vibrio species from seawater and sediment collected from Northern Malaysia. Isolates with different colony morphology were characterized using both biochemical and molecular methods before testing for antibiotic resistance and biofilm formation. Results obtained from this study showed that in Kedah, the population of Aeromonas isolated from sediment was highest in Pantai Merdeka (8.22 log CFU/ml), Pulau Bunting recorded the highest population of Aeromonas from sediment (8.43 log CFU/g). It was observed that Vibrio species isolated from seawater and sediment were highest in Kuala Sanglang (9.21 log CFU/ml). In Kuala Perlis, the population of Aeromonas isolated from seawater was highest in Jeti (7.94 log CFU/ml). Highest population of Aeromonas from sediment was recorded in Kampong Tanah Baru (7.99 log CFU/g). It was observed that Vibrio species isolated from seawater was highest in Padang Benta (8.42 log CFU/g) while Jeti Kuala Perlis had highest population of Vibrio isolated from sediment. It was observed that location does not influence population of Aeromonas. The results of the independent t - test revealed that there was no significant relationship between location and population of Vibrio (df = 10, t = 1.144, p > 0.05). The occurrence of biofilm formation and prevalence of antibiotic resistant Aeromonas and Vibrio species in seawater and sediment pose danger to human and aquatic animals' health.
    Matched MeSH terms: Drug Resistance, Bacterial*
  13. Abatcha MG, Effarizah ME, Rusul G
    Int J Food Microbiol, 2019 Feb 02;290:180-183.
    PMID: 30342248 DOI: 10.1016/j.ijfoodmicro.2018.09.021
    Salmonella enterica serovar Paratyphi B (S. Paratyphi B) is a major foodborne pathogen distributed all over the world. However, little is known about the antibiotic resistance, genetic relatedness and virulence profile of S. Paratyphi B isolated from leafy vegetables and the processing environment in Malaysia. In this study, 6 S. Paratyphi B isolates were recovered from different vegetables and drain water of processing areas obtained from fresh food markets in Malaysia. The isolates were characterized by antibiogram, Pulsed-field gel electrophoresis (PFGE) and virulence genes. Antibiotic susceptibility test showed that 3 of the isolates were resistant to the antibiotics. These include S. Paratyphi B SP251 isolate, which was resistant to chloramphenicol, ampicillin, sulfonamides and streptomycin; Isolate SP246 which was resistant to chloramphenicol, sulfonamides and streptomycin and Isolate SP235 showing resistance to nalidixic acid only. PFGE subtyped the 6 S. Paratyphi B isolates into 6 distinct XbaI-pulsotypes, with a wide range of genetic similarity (0.55 to 0.9). The isolates from different sources and fresh food markets location were genetically diverse. Thirteen (tolC, orgA, spaN, prgH, sipB, invA, pefA, sofB, msgA, cdtB, pagC, spiA and spvB) out of the 17 virulence genes tested were found in all of the S. Paratyphi B isolates. Another gene (lpfC), was found only in one isolate (SP051). None of the isolates possessed sifA, sitC and ironN genes. In summary, this study provides unique information on antibiotic resistance, genetic relatedness, and virulotyping of S. Paratyphi B isolated from leafy vegetables and processing environment.
    Matched MeSH terms: Drug Resistance, Bacterial/genetics
  14. Chin KL, Sarmiento ME, Norazmi MN, Acosta A
    Tuberculosis (Edinb), 2018 12;113:139-152.
    PMID: 30514496 DOI: 10.1016/j.tube.2018.09.008
    Tuberculosis (TB), caused by Mycobacterium tuberculosis complex (MTBC), is an infectious disease with more than 10.4 million cases and 1.7 million deaths reported worldwide in 2016. The classical methods for detection and differentiation of mycobacteria are: acid-fast microscopy (Ziehl-Neelsen staining), culture, and biochemical methods. However, the microbial phenotypic characterization is time-consuming and laborious. Thus, fast, easy, and sensitive nucleic acid amplification tests (NAATs) have been developed based on specific DNA markers, which are commercially available for TB diagnosis. Despite these developments, the disease remains uncontrollable. The identification and differentiation among MTBC members with the use of NAATs remains challenging due, among other factors, to the high degree of homology within the members and mutations, which hinders the identification of specific target sequences in the genome with potential impact in the diagnosis and treatment outcomes. In silico methods provide predictive identification of many new target genes/fragments/regions that can specifically be used to identify species/strains, which have not been fully explored. This review focused on DNA markers useful for MTBC detection, species identification and antibiotic resistance determination. The use of DNA targets with new technological approaches will help to develop NAATs applicable to all levels of the health system, mainly in low resource areas, which urgently need customized methods to their specific conditions.
    Matched MeSH terms: Drug Resistance, Bacterial/genetics
  15. Nor A'shimi MH, Alattraqchi AG, Mohd Rani F, A Rahman NI, Ismail S, Abdullah FH, et al.
    J Infect Dev Ctries, 2019 07 31;13(7):626-633.
    PMID: 32065820 DOI: 10.3855/jidc.11455
    INTRODUCTION: Acinetobacter baumannii is a Gram-negative nosocomial pathogen that has the capacity to develop resistance to all classes of antimicrobial compounds. However, very little is known regarding its susceptibility to biocides (antiseptics and disinfectants) and capacity to form biofilms, particularly for Malaysian isolates.

    AIM: To determine the susceptibility of A. baumannii isolates to commonly-used biocides, investigate their biofilm-forming capacities and the prevalence of biocide resistance and biofilm-associated genes.

    METHODOLOGY: . The minimum inhibitory concentration (MIC) values of 100 A. baumannii hospital isolates from Terengganu, Malaysia, towards the biocides benzalkonium chloride (BZK), benzethonium chloride (BZT) and chlorhexidine digluconate (CLX), were determined by broth microdilution. The isolates were also examined for their ability to form biofilms in 96-well microplates. The prevalence of biocide resistance genes qacA, qacE and qacDE1 and the biofilm-associated genes bap and abaI were determined by polymerase chain reaction (PCR).

    RESULTS: Majority of the A. baumannii isolates (43%) showed higher MIC values (> 50 µg/mL) for CLX than for BZK (5% for MIC > 50 µg/mL) and BZT (9% for MIC > 50 µg/mL). The qacDE1 gene was predominant (63%) followed by qacE (28%) whereas no isolate was found harbouring qacA. All isolates were positive for the bap and abaI genes although the biofilm-forming capacity varied among the isolates.

    CONCLUSION: The Terengganu A. baumannii isolates showed higher prevalence of qacDE1 compared to qacE although no correlation was found with the biocides' MIC values. No correlation was also observed between the isolates' biofilm-forming capacity and the MIC values for the biocides.

    Matched MeSH terms: Drug Resistance, Bacterial*
  16. Yang SK, Yusoff K, Ajat M, Thomas W, Abushelaibi A, Akseer R, et al.
    PLoS One, 2019;14(4):e0214326.
    PMID: 30939149 DOI: 10.1371/journal.pone.0214326
    Klebsiella pneumoniae (KP) remains the most prevalent nosocomial pathogen and carries the carbapenemase (KPC) gene which confers resistance towards carbapenem. Thus, it is necessary to discover novel antimicrobials to address the issue of antimicrobial resistance in such pathogens. Natural products such as essential oils are a promising source due to their complex composition. Essential oils have been shown to be effective against pathogens, but the overall mechanisms have yet to be fully explained. Understanding the molecular mechanisms of essential oil towards KPC-KP cells would provide a deeper understanding of their potential use in clinical settings. Therefore, we aimed to investigate the mode of action of essential oil against KPC-KP cells from a proteomic perspective by comparing the overall proteome profile of KPC-KP cells treated with cinnamon bark (Cinnamomum verum J. Presl) essential oil (CBO) at their sub-inhibitory concentration of 0.08% (v/v). A total of 384 proteins were successfully identified from the non-treated cells, whereas only 242 proteins were identified from the CBO-treated cells. Proteins were then categorized based on their biological processes, cellular components and molecular function prior to pathway analysis. Pathway analysis showed that CBO induced oxidative stress in the KPC-KP cells as indicated by the abundance of oxidative stress regulator proteins such as glycyl radical cofactor, catalase peroxidase and DNA mismatch repair protein. Oxidative stress is likely to oxidize and disrupt the bacterial membrane as shown by the loss of major membrane proteins. Several genes selected for qRT-PCR analysis validated the proteomic profile and were congruent with the proteomic abundance profiles. In conclusion, KPC-KP cells exposed to CBO undergo oxidative stress that eventually disrupts the bacterial membrane possibly via interaction with the phospholipid bilayer. Interestingly, several pathways involved in the bacterial membrane repair system were also affected by oxidative stress, contributing to the loss of cells viability.
    Matched MeSH terms: Drug Resistance, Bacterial/genetics
  17. Jamali H, Radmehr B
    Vet J, 2013 Nov;198(2):541-2.
    PMID: 23880504 DOI: 10.1016/j.tvjl.2013.06.012
    The aims of this study were to determine the prevalence, characteristics and antimicrobial resistance of Listeria spp. isolated from bovine clinical mastitis in Iran. Listeria spp. were detected in 21/207 bovine mastitic milk samples from dairy farms in Iran, comprising L. monocytogenes (n=17), L. innocua (n=3) and L. ivanovii (n=1). L. monocytogenes isolates were grouped into serogroups '4b, 4d, 4e', '1/2a, 3a', '1/2b, 3b, 7' and '1/2c, 3c'; all harboured inlA, inlC and inlJ virulence genes. Listeria spp. were most frequently resistant to penicillin G (14/21 isolates, 66.7%) and tetracyclines (11/21 isolates, 52.4%).
    Matched MeSH terms: Drug Resistance, Bacterial*
  18. Jamali H, Rezagholipour M, Fallah S, Dadrasnia A, Chelliah S, Velappan RD, et al.
    Vet J, 2014 Nov;202(2):381-3.
    PMID: 25201254 DOI: 10.1016/j.tvjl.2014.07.024
    The objectives of this study were to determine the prevalence, characterization and antibiotic resistance of Pasteurella multocida isolated from calves with respiratory infection in Iran. P. multocida was detected in 141/169 bovine respiratory infection cases on Iranian dairy and beef farms. P. multocida were grouped into serogroups A (126/141), D (12/141), and B (3/141). Of the P.  multocida isolates, all harboured the psl, ompH, oma87, fimA, ptfA, nanB, and nanH genes, 139/141 had hsf-2, and 115/141 pfhA, and tadD. The isolates were most frequently resistant to penicillin G (43/141 resistant isolates; 30.5%) and streptomycin (31/141; 22%).
    Matched MeSH terms: Drug Resistance, Bacterial*
  19. Simeon P, Godman B, Kalemeera F
    Hosp Pract (1995), 2021 Dec;49(5):356-363.
    PMID: 34436942 DOI: 10.1080/21548331.2021.1973825
    BACKGROUND: Lower respiratory tract infections (LRTIs) are a particular public health concern especially among sub-Saharan African countries. This is especially the case in Namibia, where LRTIs are currently the third leading cause of death, 300 deaths in children under 5 years of age. To reduce the burden of LRTIs on health systems and ensure appropriate patient management, it is critical to know the most prevalent pathogens leading to LRTIs and their susceptibility patterns in the local setting. Consequently, the objective of this study was to formulate cumulative antibiograms for Intensive Care Units (ICUs) of referral hospitals in Namibia to guide future antibiotic use.

    METHODS: A retrospective analytical cross-sectional study was conducted over 2 years. The cumulative antibiograms were constructed in accordance with current guidelines.

    RESULTS: A total of 976 first isolate cultures were obtained from ICUs of the different referral hospitals. K. pneumoniae (8.8%, 8.1%) was a predominant pathogen in Windhoek Central hospital ICU in 2017 and 2018. In Oshakati intermediate hospital ICU, Enterobacter sp. (22.2%) and P. aeruginosa (37.5%) were the common pathogens in 2017 and 2018, respectively. A. baumannii isolates were >90% susceptibility to colistin, carbapenems, and tigecycline in 2017. In 2017, K. pneumoniae isolates were more susceptible to carbapenems (94% and 93.8% among isolates), amikacin (89.3%), and tigecycline (88.7%). In 2018, K. pneumoniae isolates were 100% susceptible amikacin, colistin, and carbapenems. S. maltophilia isolates were more than 80% susceptible to all the tested antibiotics. S. aureus isolates were 100% susceptible to linezolid, rifampicin, teicoplanin, and vancomycin in 2017 and in 2018. Its susceptibility to these antibiotics did not change.

    CONCLUSION: The susceptibility patterns of the common isolated gram-negative pathogens were highly variable. Meropenem in combination with gentamicin is now the recommended antibiotic combination for empiric therapy for patients with LRTIs in Windhoek Central Hospital ICU.

    Matched MeSH terms: Drug Resistance, Bacterial*
  20. Phan MD, Nhu NTK, Achard MES, Forde BM, Hong KW, Chong TM, et al.
    J Antimicrob Chemother, 2017 10 01;72(10):2729-2736.
    PMID: 29091192 DOI: 10.1093/jac/dkx204
    Objectives: Polymyxins remain one of the last-resort drugs to treat infections caused by MDR Gram-negative pathogens. Here, we determined the mechanisms by which chromosomally encoded resistance to colistin and polymyxin B can arise in the MDR uropathogenic Escherichia coli ST131 reference strain EC958.

    Methods: Two complementary approaches, saturated transposon mutagenesis and spontaneous mutation induction with high concentrations of colistin and polymyxin B, were employed to select for mutations associated with resistance to polymyxins. Mutants were identified using transposon-directed insertion-site sequencing or Illumina WGS. A resistance phenotype was confirmed by MIC and further investigated using RT-PCR. Competitive growth assays were used to measure fitness cost.

    Results: A transposon insertion at nucleotide 41 of the pmrB gene (EC958pmrB41-Tn5) enhanced its transcript level, resulting in a 64- and 32-fold increased MIC of colistin and polymyxin B, respectively. Three spontaneous mutations, also located within the pmrB gene, conferred resistance to both colistin and polymyxin B with a corresponding increase in transcription of the pmrCAB genes. All three mutations incurred a fitness cost in the absence of colistin and polymyxin B.

    Conclusions: This study identified the pmrB gene as the main chromosomal target for induction of colistin and polymyxin B resistance in E. coli.

    Matched MeSH terms: Drug Resistance, Bacterial/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links