OBJECTIVE: to describe a case of Nipah virus encephalitis in a pig farm worker from Malaysia.
STUDY DESIGN: the clinical, laboratory and radiological findings of this patient were scrutinized. Special emphasis was placed on the electron microscopic analysis of the cerebrospinal fluid (CSF) specimen from this patient.
RESULTS: the neurological deficits indicative of cerebellar involvement were supported by the magnetic resonance imaging that showed prominent cerebellar and brainstem lesions. CSF examination provided further evidence of viral encephalitis. Complement fixation and/or RT-PCR assays were negative for Japanese encephalitis, herpes simplex, measles and mumps viruses. ELISA for detecting IgM and IgG antibodies against Hendra viral antigens were equivocal for the CSF specimen, and tested initially negative for the first serum sample but subsequently positive for the repeat serum sample. Transmission electron microscopy of negatively-stained preparations of CSF revealed enveloped virus-like structures fringed with surface projections as well as nucleocapsids with distinctive helical and herringbone patterns, features consistent with those of other paramyxoviruses, including Hendra virus.
CONCLUSION: this case report reiterates the relevant and feasible role of diagnostic electron microscopy for identifying and/or classifying novel or emerging viral pathogens for which sufficiently specific and sensitive tests are lacking.
MATERIALS AND METHODS: A review of multiple reports and kit inserts on the diagnostic performance of rapid tests from various manufacturers that are commercially available were performed. Only preliminary data are available currently.
RESULTS: From a total of nine rapid detection test (RDT) kits, three kits offer total antibody detection, while six kits offer combination SARS-CoV-2 IgM and IgG detection in two separate test lines. All kits are based on colloidal gold-labeled immunochromatography principle and one-step method with results obtained within 15 minutes, using whole blood, serum or plasma samples. The sensitivity for both IgM and IgG tests ranges between 72.7% and 100%, while specificity ranges between 98.7% to 100%. Two immunochromatography using nasopharyngeal or throat swab for detection of COVID-19 specific antigen are also reviewed.
CONCLUSIONS: There is much to determine regarding the value of serological testing in COVID-19 diagnosis and monitoring. More comprehensive evaluations of their performance are rapidly underway. The use of serology methods requires appropriate interpretations of the results and understanding the strengths and limitations of such tests.
OBJECTIVE: This paper presents a rescue framework for the transfusion of the best CP to the most critical patients with COVID-19 on the basis of biological requirements by using machine learning and novel MCDM methods.
METHOD: The proposed framework is illustrated on the basis of two distinct and consecutive phases (i.e. testing and development). In testing, ABO compatibility is assessed after classifying donors into the four blood types, namely, A, B, AB and O, to indicate the suitability and safety of plasma for administration in order to refine the CP tested list repository. The development phase includes patient and donor sides. In the patient side, prioritisation is performed using a contracted patient decision matrix constructed between 'serological/protein biomarkers and the ratio of the partial pressure of oxygen in arterial blood to fractional inspired oxygen criteria' and 'patient list based on novel MCDM method known as subjective and objective decision by opinion score method'. Then, the patients with the most urgent need are classified into the four blood types and matched with a tested CP list from the test phase in the donor side. Thereafter, the prioritisation of CP tested list is performed using the contracted CP decision matrix.
RESULT: An intelligence-integrated concept is proposed to identify the most appropriate CP for corresponding prioritised patients with COVID-19 to help doctors hasten treatments.
DISCUSSION: The proposed framework implies the benefits of providing effective care and prevention of the extremely rapidly spreading COVID-19 from affecting patients and the medical sector.