Displaying all 10 publications

Abstract:
Sort:
  1. Ibraheem ZO, Abd Majid R, Noor SM, Sedik HM, Basir R
    Malar Res Treat, 2014;2014:950424.
    PMID: 25506039 DOI: 10.1155/2014/950424
    Emergence of drugs resistant strains of Plasmodium falciparum has augmented the scourge of malaria in endemic areas. Antimalaria drugs act on different intracellular targets. The majority of them interfere with digestive vacuoles (DVs) while others affect other organelles, namely, apicoplast and mitochondria. Prevention of drug accumulation or access into the target site is one of the mechanisms that plasmodium adopts to develop resistance. Plasmodia are endowed with series of transporters that shuffle drugs away from the target site, namely, pfmdr (Plasmodium falciparum multidrug resistance transporter) and pfcrt (Plasmodium falciparum chloroquine resistance transporter) which exist in DV membrane and are considered as putative markers of CQ resistance. They are homologues to human P-glycoproteins (P-gh or multidrug resistance system) and members of drug metabolite transporter (DMT) family, respectively. The former mediates drifting of xenobiotics towards the DV while the latter chucks them outside. Resistance to drugs whose target site of action is intravacuolar develops when the transporters expel them outside the DVs and vice versa for those whose target is extravacuolar. In this review, we are going to summarize the possible pfcrt and pfmdr mutation and their role in changing plasmodium sensitivity to different anti-Plasmodium drugs.
  2. Zaid OI, Abd Majid R, Sabariah MN, Hasidah MS, Al-Zihiry K, Yam MF, et al.
    Asian Pac J Trop Med, 2015 Jul;8(7):507-12.
    PMID: 26276279 DOI: 10.1016/j.apjtm.2015.06.007
    OBJECTIVE: To explore whether its antiplasmodium effect of andrographolide is attributed to its plausible effect on the plasma membrane of both Plasmodium falciparum infected and non-infected RBCs.

    METHODS: Anti-plasmodium effect of andrographolide against Plasmodium falciparum strains was screened using the conventional malaria drug sensitivity assay. The drug was incubated with uninfected RBCs to monitor its effect on their morphology, integrity and osmotic fragility. It was incubated with the plasmodium infected RBCs to monitor its effect on the parasite induced permeation pathways. Its effect on the potential of merozoites to invade new RBCs was tested using merozoite invasion assay.

    RESULTS: It showed that at andrographolide was innocuous to RBCs at concentrations approach its therapeutic level against plasmodia. Nevertheless, this inertness was dwindled at higher concentrations.

    CONCLUSIONS: In spite of its success to inhibit plasmodium induced permeation pathway and the potential of merozoites to invade new RBCs, its anti-plasmodium effect can't be attributed to these functions as they were attained at concentrations higher than what is required to eradicate the parasite. Consequently, other mechanisms may be associated with its claimed actions.

  3. Mahmuda A, Bande F, Abdulhaleem N, Abd Majid R, Awang Hamat R, Omar Abdullah W, et al.
    Iran J Parasitol, 2018 8 3;13(2):204-214.
    PMID: 30069204
    Background: Currently, most of the available serological diagnostic kits for strongyloidiasis are based on the use of the crude antigens of Strongyloides ratti, which are good, but with less sensitivity towards the infection. Hence, this study aimed to produce and evaluate monoclonal antibody for detecting soluble parasite antigen in animal sera.

    Methods: The study was conducted in the Department of Medical Microbiology and Parasitology, University Putra Malaysia in 2014-2017. Saline extract protein from the infective larvae of S. ratti was used to immunize BALB/c mice and subsequent fusion of the B-cells with myeloma cells (SP2/0) using 50% PEG. The hybridomas were cultured in HAT medium and cloned by limiting dilutions. Positive hybrids were screened by indirect ELISA. The ascites fluid from the antibody-secreting hybridoma was purified and the MAb was characterized by western-blots and evaluated in sandwich ELISA for reactivity against the homologous and heterologous antigens.

    Results: An IgG1 that recognizes a 30 and 34 kDa protein bands was obtained. The MAb was recognized by all S. ratti-related antigens and cross-reacted with only Toxocara canis antigens in both assays. The minimum antigen detection limit was found to be 5 ng/ml. All antibody-positive rat and dog sera evaluated have shown antigen-positive reactions in Sandwich-ELISA.

    Conclusion: The MAb produced, was able to detect antigens in strongyloidiasis and toxocariasis in animal models and may also be useful for the serological detection of active strongyloidiasis and visceral toxocariasis in human sera.

  4. Nasiru Wana M, Mohd Moklas MA, Watanabe M, Zasmy Unyah N, Alhassan Abdullahi S, Ahmad Issa Alapid A, et al.
    Pathogens, 2020 Jul 16;9(7).
    PMID: 32708648 DOI: 10.3390/pathogens9070576
    The major route for Toxoplasma gondii (T. gondii) infection is through the ingestion of foods contaminated with oocyst from cat faeces. The microscopic detection of T. gondii oocysts in cat faeces is challenging, which contributes to the failure of detecting or differentiating it from other related coccidian parasites. This study aims to detect T. gondii oocysts in cat faeces using two multicopy-target PCR assays and to evaluate their genetic diversity. Cat faecal (200) samples were collected from pet cats (PCs; 100) and free-roaming cats (FRCs; 100) within Klang Valley, Malaysia, and screened for coccidian oocysts by microscopy using Sheather's sucrose floatation. PCR assays were performed on each faecal sample, targeting a B1 gene and a repetitive element (REP) gene to confirm T. gondii oocysts. Additionally, the PCR amplicons from the REP gene were sequenced to further confirm T. gondii-positive samples for phylogenetic analysis. Microscopy detected 7/200 (3.5%) T. gondii-like oocysts, while both the B1 gene and the REP gene detected 17/200 (8.5%) samples positive for T. gondii. All samples that were microscopically positive for T. gondii-like oocysts were also shown to be positive by both B1 and REP genes. The BLAST results sequenced for 16/200 (8.0%) PCR-positive T. gondii samples revealed homology and genetic heterogeneity with T. gondii strains in the GenBank, except for only one positive sample that did not show a result. There was almost perfect agreement (k = 0.145) between the two PCR assays targeting the B1 gene and the REP gene. This is the first report on microscopic, molecular detection and genetic diversity of T. gondii from cat faecal samples in Malaysia. In addition, the sensitivities of either the B1 gene or REP gene multicopy-target PCR assays are suitable for the accurate detection of T. gondii from cat faeces.
  5. Abd Rachman Isnadi MF, Chin VK, Abd Majid R, Lee TY, Atmadini Abdullah M, Bello Omenesa R, et al.
    Mediators Inflamm, 2018;2018:5346413.
    PMID: 29507527 DOI: 10.1155/2018/5346413
    Interleukin-33 (IL-33) is an IL-1 family member, which exhibits both pro- and anti-inflammatory properties solely based on the type of the disease itself. Generally, IL-33 is expressed by both endothelial and epithelial cells and mediates its function based on the interaction with various receptors, mainly with ST2 variants. IL-33 is a potent inducer for the Th2 immune response which includes defence mechanism in brain diseases. Thus, in this paper, we review the biological features of IL-33 and the critical roles of IL-33/ST2 pathway in selected neurological disorders including Alzheimer's disease, multiple sclerosis, and malaria infection to discuss the involvement of IL-33/ST2 pathway during these brain diseases and its potential as future immunotherapeutic agents or for intervention purposes.
  6. Zaid OI, Abd Majid R, Sidek HM, Noor SM, Abd Rachman-Isnadi MF, Bello RO, et al.
    Trop Biomed, 2020 Mar 01;37(1):29-49.
    PMID: 33612716
    Treatment Failure with chloroquine is one of the challenges that faced the dedicated efforts to eradicate malaria This study aims at investigating the impact of treatment failure with chloroquine on the progression of the disease-induced histo-pathogenic and immunogenic outcomes. To achieve this, Rane's protocol with modifications was applied on a model of Plasmodium berghei ANKA infected ICR mice to determine the dose response curve of chloroquine and to screen the treatment impact on the disease progression. Chloroquine was given at 1, 5, 10, 15 and 20 mg/kg once the parasitemia reached to 20-30% (the experimental initiation point). During the subsequent days, the mice were monitored for changes in the clinical signs, hematology parameters and the progress of the parasitemia until the parasitemia reached to 60-70% (the experimental termination point) or up to 10 days after chloroquine administration in case of achieving a complete eradication of the parasite. At the end, the mice were exsanguinated and their blood and organs were collected for the biochemistry and the histology study. A complete eradication of the parasite was achieved at 20 mg/kg while recrudescence was observed at the lower doses. At 1 mg/kg, the parasite growth was comparable to that of the positive control. The histo-pathogenic and immunogenic changes were stronger in the groups that experienced recrudescence (at 5 and 10 mg/kg). All in all, the study highlights the possibility of having a worsened clinical condition when chloroquine is given at its sub-therapeutic doses during malaria treatment.
  7. Nasiru Wana M, Mohd Moklas MA, Watanabe M, Nordin N, Zasmy Unyah N, Alhassan Abdullahi S, et al.
    PMID: 32635389 DOI: 10.3390/ijerph17134809
    Toxoplasmosis is a disease caused by the protozoan parasite Toxoplasma gondii (T. gondii). Human toxoplasmosis seroprevalence in Malaysia has increased since it was first reported in 1973 as shown in previous reviews of 1991 and 2007. However, over a decade since the last review, comprehensive data on toxoplasmosis in Malaysia is lacking. This work aimed at reviewing articles on toxoplasmosis research in Malaysia in order to identify the research gaps, create public awareness, and efforts made so far and proffer management options on the disease. The present review examines the available published research articles from 2008 to 2018 related to toxoplasmosis research conducted in Malaysia. The articles reviewed were retrieved from nine credible databases such as Web of Science, Google Scholar, ScienceDirect, PubMed, Scopus, Springer, Wiley online library, Ovid, and Cochrane using the keywords; Malaysia, toxoplasmosis, Toxoplasma gondii, toxoplasma encephalitis, seroprevalence, human immunodeficiency virus (HIV) patients, pregnant women, genotype strain, anti-toxoplasma antibodies, felines, and vaccine. The data highlighted seropositive cases from healthy community members in Pangkor Island (59.7%) and among migrant workers (57.4%) at alarming rates, as well as 42.5% in pregnant women. Data on animal seroprevalence were limited and there was no information on cats as the definitive host. Genetic characterization of Toxoplasma gondii from HIV patients; pregnant women, and domestic cats is lacking. This present review on toxoplasmosis is beneficial to researchers, health workers, animal health professionals, and policymakers. Therefore, attention is required to educate and enlighten health workers and the general public about the risk factors associated with T. gondii infection in Malaysia.
  8. Alapid AAI, Abd Majid R, Ibraheem ZO, Mediani A, Ismail IS, Unyah NZ, et al.
    Metabolites, 2021 Jul 28;11(8).
    PMID: 34436427 DOI: 10.3390/metabo11080486
    Andrographolide (AG) has been shown to have several medicinal and pharmaceutical effects, such as antimicrobial, anti-inflammatory, antioxidant, anti-diabetic, and anti-malarial activities. Moreover, studies to assess the pharmacological effect of AG on the metabolic changes of uninfected red blood cells (uRBCs) have not yet been investigated. This study aims to evaluate the pharmacological effects of AG compared to chloroquine (CQ) on the metabolic variations of uRBCs in vitro using a proton nuclear magnetic resonance (1H-NMR)-based metabolomics approach coupled with multivariate data analysis (MVDA). Forty-one metabolites were successfully identified by 1H-NMR. The results of the unsupervised data analysis principal component analysis (PCA) showed ideal differentiation between AG and CQ. PC1 and PC2 accounted for 71.4% and 17.7% of the explained variation, respectively, with a total variance of 89.10%. Based on S-plot and VIP values, a total of 28 and 32 metabolites were identified as biomarkers in uRBCs-AG and uRBCs-CQ, respectively. In uRBCs treated with AG, ten metabolic pathways were determined to be disturbed, including riboflavin metabolism, d-glutamate and d-glutamine metabolism, phenylalanine metabolism, glutathione metabolism, proline and arginine metabolism, arginine biosynthesis, citrate cycle, glycolysis/gluconeogenesis, and pyruvate metabolism as well as alanine, aspartate, and glutamate metabolism. In contrast, in CQ-treated uRBCs, nine affected metabolic pathways were determined, which involved the same metabolic pathways for uRBCs-AG, except for glutathione metabolism. These findings suggest an evident relationship between AG and CQ associated with metabolic changes in intact RBCs after being exposed to the treatment. The metabolomics results could allow useful comprehensive insights into the underlying mechanism of the action of AG and CQ on red blood cells. Consequently, the 1H-NMR-based metabolomics approach was successfully utilized to identify the pharmacological effects of AG and CQ on the metabolic variations of uRBCs.
  9. Bello RO, Chin VK, Abd Rachman Isnadi MF, Abd Majid R, Atmadini Abdullah M, Lee TY, et al.
    Int J Mol Sci, 2018 Apr 11;19(4).
    PMID: 29641433 DOI: 10.3390/ijms19041149
    The recently identified cytokines-interleukin (IL)-35 and interleukin (IL)-37-have been described for their anti-inflammatory and immune-modulating actions in numerous inflammatory diseases, auto-immune disorders, malignancies, infectious diseases and sepsis. Either cytokine has been reported to be reduced and in some cases elevated and consequently contributed towards disease pathogenesis. In view of the recent advances in utilizing cytokine profiles for the development of biological macromolecules, beneficial in the management of certain intractable immune-mediated disorders, these recently characterized cytokines (IL-35 and IL-37) offer potential as reasonable targets for the discovery of novel immune-modulating anti-inflammatory therapies. A detailed comprehension of their sophisticated regulatory mechanisms and patterns of expression may provide unique opportunities for clinical application as highly selective and target specific therapeutic agents. This review seeks to summarize the recent advancements in discerning the dynamics, mechanisms, immunoregulatory and anti-inflammatory actions of IL-35 and IL-37 as they relate to disease pathogenesis.
  10. Bello RO, Abdullah MA, Abd Majid R, Chin VK, Abd Rachman Isnadi MF, Ibraheem ZO, et al.
    Malar J, 2019 Dec 19;18(1):434.
    PMID: 31856836 DOI: 10.1186/s12936-019-3070-x
    BACKGROUND: The immune modulating potential of IL-35 in multiple human disorders has been reported. Consequent upon the recognition of inflammatory cytokine activation and its preponderance for mediating pathology during malaria infection, the study aimed to characterize the expression and functional contribution(s) of IL-35 in Plasmodium berghei (strain ANKA) infected mice.

    METHODS: Plasmodium berghei infection in male ICR mice was used as the rodent model of choice. The time course of IL-35 expression in the systemic circulation and tissues of P. berghei infected mice as well as their healthy control counterparts was assessed by enzyme linked immunosorbent assay and immunohistochemistry respectively. The effect of modulating IL-35 by recombinant IL-35 protein or neutralizing anti-Epstein-Barr virus-induced gene 3 antibody on the cytokine environment during P. berghei infection was assessed by flow cytometry. Furthermore, the influence of modulating IL-35 on histopathological hallmarks of malaria and disease progression was evaluated.

    RESULTS: Interleukin-35 was significantly up regulated in serum and tissues of P. berghei infected mice and correlated with parasitaemia. Neutralization of IL-35 significantly enhanced the release of IFN-γ, decreased the expression of IL-6 and decreased parasitaemia patency. Neutralization of IL-35 was also associated with a tendency towards increased survival as well as the absence of pathological features associated with malaria infection unlike recombinant IL-35 protein administration which sustained a normal course of infection and unfavourable malaria associated histological outcomes in P. berghei infected mice.

    CONCLUSION: These results indicate the involvement of IL-35 in P. berghei induced malaria infection. IL-35 neutralization strategies may represent viable therapeutic modalities beneficial for the resolution of malaria infection.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links