The new Genting Sempah tunnel represents an important part of the widening and upgrading of the main east-west road link between Kuala Lumpur on the west coast and Kuantan on the east coast of Peninsular Malaysia. The new tunnel is located between 18m to 30m north of the existing (old) tunnel which was constructed in 1975 and has a similar alignment. Engineering geological investigations and site characterization for the construction of the new tunnel were carried out in 1994 with drilling, aerial photograph interpretation, surface geological mapping, geophysical surveys and laboratory testing. Rock mass classification was carried out based on the Q classification system of Barton et at. (1974). Based on this classification, it was predicted that for the tunnel zone, 8.6 % of the length of the tunnel consisted of rock mass classified as very poor i.e. type two, 82.8% as extremely poor, i.e. type three and the remaining 8.6% as exceptionally poor, i.e. type four. Excavation of the tunnel between March 1995 and September 1996 together with engineering geological logging and rock mass classification revealed the following; type two, very poor 6.3%, type three, extremely poor 89.9%, type four, exceptionally poor 3.8%. These results show the general validity of the prediction of the rock mass quality.
Terowong kedua Genting Sempah merupakan suatu bahagian utama dalam pembesaran dan peningkatan taraf jalan timur-barat utama yang menghubungi Kuala Lumpur di pantai barat dan Kuantan di pantai timur Semenanjung Malaysia. Terowong kedua berkedudukan 18 m hingga 30 m ke utara terowong lama yang dibina pada tahun 1975 dan mempunyai penjajaran yang sama. Penyiasatan geologi kejuruteraan dan pemeriksaan tapak pembinaan terowong kedua dilaksanakan pada tahun 1994 dengan penggerudian, pentafsiran fotograf udara, pemetaan geologi permukaan, survei geofizik dan ujian makmal. Pengelasan kualiti jasad batuan dilakukan berdasarkan sistem pengelasan Q oleh Barton et al. (1974). Hasil pengelasan ini di zon terowong meramalkan 8.6% panjang terowong baru terdiri daripada jasad batuan berkualiti sangat rendah, iaitu jenis dua, 82.8% berkualiti tersangat rendah, iaitu jenis tiga manakala 8.6% panjang terowong terdiri daripada jasad batuan berkualiti luarbiasa rendah, iaitu jenis empat. Penggalian terowong di antara Mac 1995 dan September 1996 dengan rakaman geologi kejuruteraan dan pengelasan jasad batuan semasa penggalian menghasilkan keputusan seperti berikut; jenis dua, berkualiti sangat rendah 6.3%, jenis tiga, berkualiti tersangat rendah 89.9%, jenis empat, berkualiti luar biasa rendah 3.8%. Keputusan
A geotechnical study needs to be carried out to determine the engineering parameters of the rock mass at the project site in executing construction projects such as tunnels, dams, highways and buildings. Design and safety factor of the construction are highly dependent on soil and rock engineering parameters which are usually determined by in-situ test such as Standard Penetration Test (SPT) and seismic tests. The SPT test which normally involves drilling and laboratory works always incur high operating cost, while seismic tests on the other hand are fast, cheap, non-destructive and an easy to operate method for rock mass characterization. The spectral analysis of surface waves (SASW) method is an in situ and non-destructive measurement that is rapid and cost effective. The aims of this study were to determine Rock Quality Designation (RQD) value, excavation classification analysis as well as site characterization by using the SASW method. WinSASW 3.1.3 was used for inversion processing of the SASW data to produce shear wave velocity (Vs) versus depth profiles. The profiles were then analyzed and correlated with rock mass engineering geological parameters such as RQD and site characterization as well as excavation classification of rock mass. Twenty (20) SASW tests were conducted on the granitic rock mass and four (4) SASW tests were conducted on a cut hill slope of metasedimentary rocks. RQD values were computed based on shear wave velocities and ultrasonic velocities of intact (fresh) rock. The differences between RQD obtained from SASW method and those from discontinuity survey were found to be less than 10%. Excavation classification for granitic rock mass at JKR Quarry was empirically determined using both SASW and ultrasonic velocities as well as RQD value of the rock mass. Site characterization for metasedimentary rocks mass at Bukit Tampoi was determined based on shear wave velocities from SASW method.
In the literatures, discussions on the accuracy of different models for landslide analysis have been discussed widely.
However, to date, arguments on the type of input data (landslides in the form of point or polygon) and how they affect
the accuracy of these models can hardly be found. This study assesses how different types of data (point or polygon)
applied to the same model influence the accuracy of the model in determining areas susceptible to landsliding. A total
of 137 landslides was digitised as polygon (areal) units and then transformed into points; forming two separate datasets
both representing the same landslides within the study area. These datasets were later separated into training and
validation datasets. The polygon unit dataset uses the area density technique reported as percentage, while the point
data uses the landslide density technique, as means of assigning weighting to landslide factor maps to generate the
landslide susceptibility map that is based on the analytical hierarchy process (AHP) model. Both data groups show striking
differences in terms of mapping accuracy for both training and validation datasets. The final landslide susceptibility
map using area density (polygon) as input only has 48% (training) and 35% (validation) accuracy. The accuracy for
the susceptibility map using the landslide density as input data achieved 89% and 82% for both training and validation
datasets, respectively. This result showed that the selection of the type of data for landslide analysis can be critical in
producing an acceptable level of accuracy for the landslide susceptibility map. The authors hope that the finding of this
research will assist landslide investigators to determine the appropriateness of the type of landslide data because it will
influence the accuracy of the final landslide potential map.
The uniaxial compressive strength (UCS) is one of the most common mechanical parameters required in geotechnical engineering to characterize the compressive strength of rock material. Measurements of UCS are expensive, time consuming, destructive and thus, not favorable in the presence of limited samples. Therefore, a simple yet practical application is needed for the estimation of UCS. This research presents two correlations to predict UCS values for granite and schist by using ultrasonic velocity travel time (tp) from ultrasonic tests. The validity of the practical approach presented in this research is confirmed based on the strong correlations developed from the experimental tests conducted. For the entire data set, the correlation between UCS and ultrasonic velocity travel time was expressed as UCS = 217.2 e-0.016(tp) for granite and UCS = 1110.6 e-0.037(tp) for schist and the coefficient of determination (R2) value for both granite and schist is 0.93. These correlations may be useful for applications related to geotechnical engineering designs.
Analisis spektrum gelombang permukaan (SASW) adalah kaedah seismos yang menggunakan ciri serakan gelombang Rayleigh yang merambat pada lapisan bahan bagi memperolehi profil halaju gelombang ricih. Kaedah SASW merupakan satu kaedah insitu tanpa musnah untuk pencirian tapak geoteknik yang lebih kos efektif berbanding kaedah konvensyenal secara penggerudian. Dalam kajian ini sebanyak 20 stesen yang terdiri daripada 13 tapak kajian telah dipilih. Perisian (WINSASW 2.0) telah digunakan dalam proses penyongsangan untuk menghasilkan profil halaju gelombang ricih melawan kedalaman. Profil-profil ini kemudian dianalisis secara berasingan bagi memperolehi beberapa parameter geologi kejuruteraan jasad batuan seperti kekukuhan, nilai Penanda Mutu Batuan (RQD), anisotropi dan sifat kebolehkorekan. Analisis data SASW dijalankan dengan menganggap bahawa jasad batuan adalah homogen dan isotrop serta mengandungi pelbagai intensiti ketakselanjaran yang mempengaruhi perambatan halaju gelombang permukaan. Pengukuran sifat kedinamikan tanah dijalankan dengan menggunakan halaju gelombang ricih dan nilai ketukan N daripada Ujian Penusukan Piawai (NSPT) dalam lubang gerudi. Satu persamaan linear baharu, Vs = 4.44 NSPT + 213.84 yang mengaitkan halaju gelombang ricih dan NSPT telah diperolehi. Satu persamaan empirik telah dikemukakan bagi mengukur nilai Penanda Mutu Batuan (RQD) berasaskan halaju gelombang ricih yang diperolehi daripada kaedah SASW dan halaju daripada ujian ultrasonik. Persamaan ini memberikan hasil yang perbezaannya kurang daripada 10% berbanding data RQD daripada lubang gerudi. Analisis keanisotropan jasad batuan dijalankan menggunakan halaju gelombang ricih yang diperolehi berdasarkan kaedah SASW yang diukur dalam empat arah. Plot nisbah halaju gelombang ricih - halaju ultrasonik melawan halaju ultrasonik telah digunakan untuk menentukan sifat kebolehkorekan jasad batuan. Sebanyak lima kelas lengkungan kebolehkorekan jasad batuan telah dapat dikemukakan iaitu lengkungan Mudah korek, Mudah koyak, Susah koyak, Pemecah hidraulik dan Peletupan.
Perbukitan batu kapur di Lembah Kinta membentuk landskap muka bumi yang unik dan indah hasil daripada proses pelarutan batuan karbonat. Namun begitu, bergantung kepada kawasan perbukitan batu kapur tersebut, kehadiran pelbagai struktur geologi seperti struktur retakan dan kekar yang ekstensif mampu memberi ancaman kepada manusia dan harta benda. Kajian ini bertujuan melihat hubungan antara ketumpatan lineamen dan tahap kestabilan tujuh cerun gunung batu kapur di Lembah Kinta, Malaysia. Kajian ini terbahagi kepada dua peringkat, iaitu pemetaan ketumpatan lineamen dan penilaian kestabilan cerun dengan menggunakan kaedah Kekuatan Jasad Batuan (RMS). Sebanyak 599 lineamen rantau dikenal pasti dengan panjang keseluruhan lineamen mencapai 317 km. Seterusnya, peta ketumpatan lineamen yang dihasilkan dikelaskan kepada tiga kelas: Rendah (137.0-84.23) m, sederhana (84.22-46.83) m dan tinggi (46.82-0.0) m. Kaedah RMS yang dijalankan di lapangan pula adalah bertujuan bagi mengesahkan peta ketumpatan lineamen yang dihasilkan. Sebanyak dua belas stesen dinilai dengan tujuh parameter RMS iaitu kekuatan bahan batuan, tahap luluhawa, bukaan kekar, orientasi kekar, kelebaran kekar, ketakselanjaran dan aliran air bawah tanah. Setiap cerun yang dinilai dikelaskan kepada lima kumpulan daripada sangat lemah hingga sangat kuat. Skor RMS berdasarkan jumlah akhir setiap parameter yang dinilai. Hampir kesemua stesen yang dicerap berada pada kelas sederhana (Gunung Rapat, Datok, Kandu, Panjang, A, Tempurung) manakala hanya satu stesen (Gunung Lang) berada pada kelas lemah. Korelasi antara peta ketumpatan lineamen dan skor RMS menunjukkan korelasi yang baik dengan 73% ketepatan. Ini menunjukkan bahawa kestabilan cerun di Lembah Kinta dipengaruhi secara langsung oleh ketumpatan lineamen rantau.
Lembangan Tuba adalah satu endapan aluvium yang terletak di antara perbukitan granit di bahagian barat Pulau Tuba dan tanah tinggi batuan sedimen Formasi Setul di bahagian barat. Lembangan ini menganjur timur laut ke arah barat daya sepanjang hampir 3 km dan mempunyai kelebaran sejauh 2 km. Satu survei geofizik permukaan menggunakan teknik geoelektrik telah dilakukan untuk mengkaji struktur subpermukaan dan mengesan kehadiran sebarang akuifer serta jenis nya dalam lembangan ini. Di samping itu, kepekatan unsur-unsur dalam air tanah juga dianalisis untuk melihat kebarangkalian berlakunya intrusi air laut ke dalam akuifer pantai. Sebanyak 22 stesen telah dipilih secara rawak di
seluruh kawasan kajian untuk dilakukan survei geoelektrik duga-dalam. Sementara itu air bawah tanah telah diambil dari 11 telaga untuk analisis kimia di makmal. Hasil analisis mendapati semua sampel air perigi ini adalah berjenis air tawar. Profil keberintangan pada arah timur laut - barat daya yang menganjur dari Teluk Berembang hingga Teluk Bujur mempunyai nilai keberintangan yang berkisar di antara 4 Ωm sehingga infiniti. Lapisan teratas yang mempunyai ketebalan sekitar 1-3 meter dan berkeberintangan 4 -12 Ωm ditafsirkan sebagai lempung manakala lapisan di bawahnya
yang berketebalan 10 hingga 50 meter dengan nilai keberintangan 2 - 480 Ωm ditafsirkan sebagai bahan berpasir dengan air tawar atau pasir berair payau. Keberintangan berjulat ribuan ohm.m hingga infiniti dianggap mewakili batuan dasar granit dan batu kapur. Kedalaman maksimum yang dicapai oleh survei keberintangan ialah sekitar 70 m.
The peak friction angle (φpeak) roughness of discontinuity surfaces is a value that is fundamental to the understanding of shear strength of geological discontinuities, considering its importance in determining the mechanical properties of the discontinuity surface. It is however, both time and cost demanding to determine the peak friction angle as it requires an extensive series of laboratory tests. This paper presents an approach in the form of an experimentally determined polynomial equation to estimate peak friction angle of limestone discontinuity surfaces by measuring the Joint Roughness Coefficient (JRC) values in a field survey study, and applying the fore mentioned empirical correlation. A total of 1967 tilt tests and JRC measurements were conducted in the laboratory to determine the peak friction angles of rough limestone discontinuity surfaces. The experimental results were analyzed and correlated to establish a polynomial equation of φpeak = -0.0635JRC2 + 3.95JRC + 25.2 with coefficient of determination (R2) of 0.99. The laboratory results were also compared with theoretical results calculated from Barton's linear equation. The results shown that estimation of peak friction angles were more accurate using the newly proposed polynomial equation since the percentage differences between measured and calculated peak friction angles is less than 6% compared to estimation from Barton's linear equation where the percentage of differences is less than 11%. The proposed correlation offers a practical method for estimation of peak friction angles of discontinuity surfaces of limestone from measurement of JRC in the field.
The ultimate bearing capacity is an essential requirement in design quantification for shallow foundations especially
for structures built on large rock masses. In many engineering projects, structures built on foundation of heavily jointed
rock masses may face issues such as instability and sudden catastrophic rock slope failure. Determination of the ultimate
bearing capacity (Qult) of foundations resting on rock mass has traditionally been determined by employing several
strength criterions. One of the accepted and widely implemented methods is to use the Hoek-Brown failure criterion 2002,
where the required parameters are determined from a rock mass classification system, Geological Strength Index (GSI).
This paper defines an assessment for ultimate bearing capacity (Qult) based on the Hoek-Brown failure criterion 2002
for a granitic rock slope beneath a 20 m diameter concrete water tank at Bandar Mahkota Cheras, Kajang, Selangor.
Based on the Hoek-Brown failure criterion 2002, the ultimate bearing capacity (Qult) of rock mass was 7.91 MPa. The
actual stress acting on the rock mass was 0.32 MPa. The assessment showed that the rock mass is safe since the ultimate
bearing capacity (Qult) is 24.7 times higher than the actual stress acting on the rock mass.
The uniaxial compressive strength test is a destructive and time consuming test. A number of non-destructive methods using portable testing equipment are more applicable and easier to conduct. This paper presents the results of a systematic approach to determine the uniaxial compressive strength of rock material using the Schmidt hammer rebound test. A total of five distinct locations (Graham Coast, Davis Coast, Nanson Island, Danco Coast and Trinity Island) were tested using the Schmidt rebound hammer test. Peninsula Antarctic located at northwest of Antarctic region comprising of igneous and metamorphic rocks. Statistical analysis of the results at 95% confidence level showed the Schmidt rebound value of the Graham Coast ranges from 40±1.7 to 41±1.3 with standard deviation of 8.2 to 6.4. The rebound value for Davis Coast was 39±1.6 with standard deviation of 7.7. Rocks from Nanson Island and Danco Coast have the Schmidt rebound value of 54±1.7 with standard deviation of 8.0 and 36±1.3 with standard deviation of 6.2, respectively. The Schmidt rebound value of rocks at Trinity Island ranges from 29±1.4 to 32±1.7 with standard deviation of 6.8 to 8.1. Thus, the respective uniaxial compressive strengths of rock materials from Graham Coast, Davis Coast, Danco Coast, Nanson Island and Trinity Island were 73-108, 50, 59, 164 and 45-59 MPa. The respective ISRM strength classification of rock materials of Graham Coast, Davis Coast, Danco Coast, Nanson Island and Trinity Island were strong (R4) to very strong rock (R5), medium strong rock (R3), strong rock (R4), very strong rock (R5) and medium strong (R3) to strong rock (R4). The results showed a mean of quantification of rock material strength based on the Schmidt Hammer rebound test in Antarctic Peninsula.
The stability of the limestone cliff at Gunung Kandu, Gopeng, Perak, Malaysia was assessed based on the Slope Mass
Rating (SMR) system on 53 cross sections of the Gunung Kandu hill slopes. The slopes of Gunung Kandu were identified
as class I (very good) to IV (poor). The kinematic analysis showed that 12 out of 53 hill slopes of Gunung Kandu were
identified as having potential wedge, planar and toppling failures. The assessment showed that the stability of the western
flanks can be classified as stable to unstable with the probability of failure from 0.2 to 0.6. The stability of the eastern and
southern flanks range from very stable to partially stable with the probability of failure from 0.0 to 0.4. While the stability
of northern flanks are from very stable to stable with the probability of failure of 0.0 - 0.2. This systematic approach
offers a practical method especially for large area of rock slope stability assessment and the results from probability of
failure values will help engineers to design adequate mitigation measures.
The limestone hill of Batu Caves is slowly being turned into a recreation park for slope climbing, base jumping and cave exploring. Quantitative assessment on the stability of the cave is essential to ensure the safety of tourists and visitors. The aim of this study was to quantitatively assess the stability of Gua Damai, Batu Caves, Selangor, Malaysia by using the Q system for rock mass classification, together with other factors such as cave width and thickness of the cave roof. The stability of the limestone cave wall was evaluated using Slope Mass Rating (SMR). A discontinuity survey conducted along the slopes beneath the opening of the cave showed that the rock mass comprised of four major joint sets labeled as J1, J2, J3, and J4 with the dip directions and angles of 110˚/73˚, 325˚/87˚, 243˚/39˚ and 054˚/30˚, respectively. The result of kinematic analysis showed that the dip direction/dip angle of a potential wedge failure was 051˚/59˚. By referring to the ratio of cave roof thickness with cave width, the results showed that the cave is stable. Based on the relationship between Q system and the cave width, the stabilities of Section 4 of Gua Damai is stable while Section 1, 2, 3, 5, 6, 7 and 8 require supports. Based on SMR, the cave walls stability at Portion c, d, and f were not stable while Portion a, b, e and g were stable. Overall, the most stable part of the cave is Section 4 followed by Sections 5 and 2. Sections 1, 3 and 8 are moderately stable while Sections 6 and 7 have poor stability.