Displaying all 9 publications

Abstract:
Sort:
  1. Abdulhameed AS, Wu R, Musa SA, Agha HM, ALOthman ZA, Jawad AH, et al.
    Int J Biol Macromol, 2024 Jan;256(Pt 1):128267.
    PMID: 37992917 DOI: 10.1016/j.ijbiomac.2023.128267
    In this study, chitosan/nano SiO2 (CTS/NS) was chemically modified with bisphenol A diglycidyl ether (BADGE) cross-linker-assisted hydrothermal process to create an effective adsorbent, CTS-BADGE/NS, for the removal of reactive orange 16 (RO16) dye from aquatic systems. Box-Behnken design (BBD) was used to optimize the adsorption process by varying the adsorbent dose (0.02-0.1 g/100 mL), pH (4-10), and time (20-360 min). The adsorption isotherm results indicated that the Langmuir model fits the experimental data well, suggesting that the adsorption process involves a monolayer formation of RO16 on the surface of CTS-BADGE/NS. The kinetic modeling of RO16 adsorption by CTS-BADGE/NS demonstrated that the pseudo-first-order model fits the adsorption data. CTS-BADGE/NS achieved an adsorption capacity of 97.8 mg/g for RO16 dye at optimum desirability functions of dosage 0.099 g/100 mL, solution pH of 4.44, and temperature of 25 °C. Overall, the π-π electron donor-acceptor system significantly improved the adsorption performance of the CTS-BADGE/NS. The results of the regeneration investigation demonstrate that the CTS-BADGE/NS exhibits effective adsorption of RO16, even after undergoing five consecutive cycles. The results of this study suggest that the developed CTS-BADGE/NS composite can be a promising adsorbent for water purification applications.
  2. Agha HM, Abdulhameed AS, Jawad AH, Sidik NJ, Aazmi S, Wilson LD, et al.
    Int J Phytoremediation, 2024;26(4):459-471.
    PMID: 37583281 DOI: 10.1080/15226514.2023.2246596
    This work aims to apply the use of food-grade algae (FGA) composited with chitosan-benzaldehyde Schiff base biopolymer (CHA-BD) as a new adsorbent (CHA-BA/FGA) for methyl violet 2B (MV 2B) dye removal from aqueous solutions. The effect of three processing variables, including CHA-BA/FGA dosage (0.02-0.1 g/100 mL), pH solution (4-10), and contact duration (10-120 min) on the removal of MV 2B was investigated using the Box-Behnken design (BBD) model. Kinetic and equilibrium dye adsorption profiles reveal that the uptake of MV 2B dye by CHA-BA/FGA is described by the pseudo-second kinetics and the Langmuir models. The thermodynamics of the adsorption process (ΔG°, ΔH°, and ΔS°) reveal spontaneous and favorable adsorption parameters of MV 2B dye onto the CHA-BA/FGA biocomposite at ambient conditions. The CHA-BA/FGA exhibited the maximum ability to absorb MV 2B of 126.51 mg/g (operating conditions: CHA-BA/FGA dose = 0.09 g/100 mL, solution pH = 8.68, and temperature = 25 °C). Various interactions, including H-bonding, electrostatic forces, π-π stacking, and n-π stacking provide an account of the hypothesized mechanism of MV 2B adsorption onto the surface of CHA-BA/FGA. This research reveals that CHA-BA/FGA with its unique biocomposite structure and favorable adsorption properties can be used to remove harmful cationic dyes from wastewater.
  3. Agha HM, Abdulhameed AS, Jawad AH, Sidik NJ, Aazmi S, ALOthman ZA, et al.
    Int J Biol Macromol, 2023 Dec 31;253(Pt 5):127112.
    PMID: 37774818 DOI: 10.1016/j.ijbiomac.2023.127112
    Herein, a highly efficient and sustainable adsorbent of cross-linked chitosan-glyoxal/algae biocomposite (CHT-GLX/ALG) adsorbent was developed through an innovative hydrothermal cross-linking method. The CHT-GLX/ALG biocomposite was characterized using several complementary analytical methods that include CHN-O, XRD, FTIR, SEM-EDX, and pHpzc. This new adsorbent, named CHT-GLX/ALG, was utilized for the adsorption of a cationic dye (methyl violet 2B; MV 2B), from synthetic wastewater. The optimization of the dye adsorption process involved key parameters is listed: CHT-GLX/ALG dosage (from 0.02 to 0.1 g/100 mL), pH (from 4 to 10), and contact time (from 20 to 180 min) that was conducted using the Box-Behnken design (BBD). The optimal adsorption conditions for the highest decolorization efficiency of MV 2B (97.02 %) were estimated using the statistical model of the Box-Behnken design. These conditions include a fixed adsorbent dosage of 0.099 g/100 mL, pH 9.9, and a 179.9 min contact time. The empirical data of MV 2B adsorption by CHT-GLX/ALG exhibited favorable agreement with the Freundlich isotherm model. The kinetic adsorption profile of MV 2B by CHT-GLX/ALG revealed a good fit with the pseudo-second-order model. The maximum adsorption capacity (qmax) for MV 2B by CHT-GLX/ALG was estimated at 110.8 mg/g. The adsorption of MV 2B onto the adsorbent can be attributed to several factors, including electrostatic interactions between the negatively charged surface of CHT-GLX/ALG and the MV 2B cation, as well as n-π and H-bonding. These interactions play a crucial role in facilitating the effective adsorption of MV 2B onto the biocomposite adsorbent. Generally, this study highlights the potential of CHT-GLX/ALG as an efficient and sustainable adsorbent for the effective removal of organic dyes.
  4. Agha HM, Abdulhameed AS, Jawad AH, Aazmi S, Sidik NJ, De Luna Y, et al.
    Int J Biol Macromol, 2024 Feb;258(Pt 1):128792.
    PMID: 38110162 DOI: 10.1016/j.ijbiomac.2023.128792
    Herein, a natural material including chitosan (CTS) and algae (food-grade algae, FGA) was exploited to attain a bio-adsorbent (CTS/FGA) for enhanced methyl violet 2B dye removal. A study of the FGA loading into CTS matrix showed that the best mixing ratio between CTS and FGA to be used for the MV 2B removal was 50 %:50 % (CTS/FGA; 50:50 w/w). The present study employed the Box-Behnken design (RSM-BBD) to investigate the impact of three processing factors, namely CTS/FGA-(50:50) dose (0.02-0.1 g/100 mL), pH of solution (4-10), and contact time (5-15 min) on the decolorization rate of MV 2B dye. The results obtained from the equilibrium and kinetic experiments indicate that the adsorption of MV 2B dye on CTS/FGA-(50:50) follows the Langmuir and pseudo-second-order models, respectively. The CTS/FGA exhibits an adsorption capacity of 179.8 mg/g. The characterization of CTS/FGA-(50:50) involves the proposed mechanism of MV 2B adsorption, which primarily encompasses various interactions such as electrostatic forces, n-π stacking, and H-bonding. The present study demonstrates that CTS/FGA-(50:50) synthesized material exhibits a distinctive structure and excellent adsorption properties, thereby providing a viable option for the elimination of toxic cationic dyes from polluted water.
  5. Rosenthal VD, Yin R, Lu Y, Rodrigues C, Myatra SN, Kharbanda M, et al.
    Am J Infect Control, 2023 Jun;51(6):675-682.
    PMID: 36075294 DOI: 10.1016/j.ajic.2022.08.024
    BACKGROUND: The International Nosocomial Infection Control Consortium has found a high ICU mortality rate. Our aim was to identify all-cause mortality risk factors in ICU-patients.

    METHODS: Multinational, multicenter, prospective cohort study at 786 ICUs of 312 hospitals in 147 cities in 37 Latin American, Asian, African, Middle Eastern, and European countries.

    RESULTS: Between 07/01/1998 and 02/12/2022, 300,827 patients, followed during 2,167,397 patient-days, acquired 21,371 HAIs. Following mortality risk factors were identified in multiple logistic regression: Central line-associated bloodstream infection (aOR:1.84; P

  6. Rosenthal VD, Yin R, Nercelles P, Rivera-Molina SE, Jyoti S, Dongol R, et al.
    Am J Infect Control, 2024 Jan 06.
    PMID: 38185380 DOI: 10.1016/j.ajic.2023.12.019
    BACKGROUND: Reporting on the International Nosocomial Infection Control Consortium study results from 2015 to 2020, conducted in 630 intensive care units across 123 cities in 45 countries spanning Africa, Asia, Eastern Europe, Latin America, and the Middle East.

    METHODS: Prospective intensive care unit patient data collected via International Nosocomial Infection Control Consortium Surveillance Online System. Centers for Disease Control and Prevention/National Health Care Safety Network definitions applied for device-associated health care-associated infections (DA-HAI).

    RESULTS: We gathered data from 204,770 patients, 1,480,620 patient days, 936,976 central line (CL)-days, 637,850 mechanical ventilators (MV)-days, and 1,005,589 urinary catheter (UC)-days. Our results showed 4,270 CL-associated bloodstream infections, 7,635 ventilator-associated pneumonia, and 3,005 UC-associated urinary tract infections. The combined rates of DA-HAIs were 7.28%, and 10.07 DA-HAIs per 1,000 patient days. CL-associated bloodstream infections occurred at 4.55 per 1,000 CL-days, ventilator-associated pneumonias at 11.96 per 1,000 MV-days, and UC-associated urinary tract infections at 2.91 per 1,000 UC days. In terms of resistance, Pseudomonas aeruginosa showed 50.73% resistance to imipenem, 44.99% to ceftazidime, 37.95% to ciprofloxacin, and 34.05% to amikacin. Meanwhile, Klebsiella spp had resistance rates of 48.29% to imipenem, 72.03% to ceftazidime, 61.78% to ciprofloxacin, and 40.32% to amikacin. Coagulase-negative Staphylococci and Staphylococcus aureus displayed oxacillin resistance in 81.33% and 53.83% of cases, respectively.

    CONCLUSIONS: The high rates of DA-HAI and bacterial resistance emphasize the ongoing need for continued efforts to control them.

  7. Rosenthal VD, Yin R, Brown EC, Lee BH, Rodrigues C, Myatra SN, et al.
    Infect Control Hosp Epidemiol, 2024 May;45(5):567-575.
    PMID: 38173347 DOI: 10.1017/ice.2023.215
    OBJECTIVE: To identify urinary catheter (UC)-associated urinary tract infection (CAUTI) incidence and risk factors.

    DESIGN: A prospective cohort study.

    SETTING: The study was conducted across 623 ICUs of 224 hospitals in 114 cities in 37 African, Asian, Eastern European, Latin American, and Middle Eastern countries.

    PARTICIPANTS: The study included 169,036 patients, hospitalized for 1,166,593 patient days.

    METHODS: Data collection took place from January 1, 2014, to February 12, 2022. We identified CAUTI rates per 1,000 UC days and UC device utilization (DU) ratios stratified by country, by ICU type, by facility ownership type, by World Bank country classification by income level, and by UC type. To estimate CAUTI risk factors, we analyzed 11 variables using multiple logistic regression.

    RESULTS: Participant patients acquired 2,010 CAUTIs. The pooled CAUTI rate was 2.83 per 1,000 UC days. The highest CAUTI rate was associated with the use of suprapubic catheters (3.93 CAUTIs per 1,000 UC days); with patients hospitalized in Eastern Europe (14.03) and in Asia (6.28); with patients hospitalized in trauma (7.97), neurologic (6.28), and neurosurgical ICUs (4.95); with patients hospitalized in lower-middle-income countries (3.05); and with patients in public hospitals (5.89).The following variables were independently associated with CAUTI: Age (adjusted odds ratio [aOR], 1.01; P < .0001), female sex (aOR, 1.39; P < .0001), length of stay (LOS) before CAUTI-acquisition (aOR, 1.05; P < .0001), UC DU ratio (aOR, 1.09; P < .0001), public facilities (aOR, 2.24; P < .0001), and neurologic ICUs (aOR, 11.49; P < .0001).

    CONCLUSIONS: CAUTI rates are higher in patients with suprapubic catheters, in middle-income countries, in public hospitals, in trauma and neurologic ICUs, and in Eastern European and Asian facilities.Based on findings regarding risk factors for CAUTI, focus on reducing LOS and UC utilization is warranted, as well as implementing evidence-based CAUTI-prevention recommendations.

  8. Rosenthal VD, Jin Z, Yin R, Sahu S, Rajhans P, Kharbanda M, et al.
    J Crit Care, 2024 Apr;80:154500.
    PMID: 38128216 DOI: 10.1016/j.jcrc.2023.154500
    BACKGROUND: Ventilator associated pneumonia (VAP) occurring in the intensive care unit (ICU) are common, costly, and potentially lethal.

    METHODS: We implemented a multidimensional approach and an 8-component bundle in 374 ICUs across 35 low and middle-income countries (LMICs) from Latin-America, Asia, Eastern-Europe, and the Middle-East, to reduce VAP rates in ICUs. The VAP rate per 1000 mechanical ventilator (MV)-days was measured at baseline and during intervention at the 2nd month, 3rd month, 4-15 month, 16-27 month, and 28-39 month periods.

    RESULTS: 174,987 patients, during 1,201,592 patient-days, used 463,592 MV-days. VAP per 1000 MV-days rates decreased from 28.46 at baseline to 17.58 at the 2nd month (RR = 0.61; 95% CI = 0.58-0.65; P 

  9. Rosenthal VD, Jin Z, Memish ZA, Rodrigues C, Myatra SN, Kharbanda M, et al.
    PMID: 36714281 DOI: 10.1017/ash.2022.339
    OBJECTIVE: Rates of ventilator-associated pneumonia (VAP) in low- and middle-income countries (LMIC) are several times above those of high-income countries. The objective of this study was to identify risk factors (RFs) for VAP cases in ICUs of LMICs.

    DESIGN: Prospective cohort study.

    SETTING: This study was conducted across 743 ICUs of 282 hospitals in 144 cities in 42 Asian, African, European, Latin American, and Middle Eastern countries.

    PARTICIPANTS: The study included patients admitted to ICUs across 24 years.

    RESULTS: In total, 289,643 patients were followed during 1,951,405 patient days and acquired 8,236 VAPs. We analyzed 10 independent variables. Multiple logistic regression identified the following independent VAP RFs: male sex (adjusted odds ratio [aOR], 1.22; 95% confidence interval [CI], 1.16-1.28; P < .0001); longer length of stay (LOS), which increased the risk 7% per day (aOR, 1.07; 95% CI, 1.07-1.08; P < .0001); mechanical ventilation (MV) utilization ratio (aOR, 1.27; 95% CI, 1.23-1.31; P < .0001); continuous positive airway pressure (CPAP), which was associated with the highest risk (aOR, 13.38; 95% CI, 11.57-15.48; P < .0001); tracheostomy connected to a MV, which was associated with the next-highest risk (aOR, 8.31; 95% CI, 7.21-9.58; P < .0001); endotracheal tube connected to a MV (aOR, 6.76; 95% CI, 6.34-7.21; P < .0001); surgical hospitalization (aOR, 1.23; 95% CI, 1.17-1.29; P < .0001); admission to a public hospital (aOR, 1.59; 95% CI, 1.35-1.86; P < .0001); middle-income country (aOR, 1.22; 95% CI, 15-1.29; P < .0001); admission to an adult-oncology ICU, which was associated with the highest risk (aOR, 4.05; 95% CI, 3.22-5.09; P < .0001), admission to a neurologic ICU, which was associated with the next-highest risk (aOR, 2.48; 95% CI, 1.78-3.45; P < .0001); and admission to a respiratory ICU (aOR, 2.35; 95% CI, 1.79-3.07; P < .0001). Admission to a coronary ICU showed the lowest risk (aOR, 0.63; 95% CI, 0.51-0.77; P < .0001).

    CONCLUSIONS: Some identified VAP RFs are unlikely to change: sex, hospitalization type, ICU type, facility ownership, and country income level. Based on our results, we recommend focusing on strategies to reduce LOS, to reduce the MV utilization ratio, to limit CPAP use and implementing a set of evidence-based VAP prevention recommendations.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links