Displaying all 8 publications

Abstract:
Sort:
  1. Khoramnia A, Ebrahimpour A, Ghanbari R, Ajdari Z, Lai OM
    Biomed Res Int, 2013;2013:954542.
    PMID: 23971051 DOI: 10.1155/2013/954542
    Coconut oil is a rich source of beneficial medium chain fatty acids (MCFAs) particularly lauric acid. In this study, the oil was modified into a value-added product using direct modification of substrate through fermentation (DIMOSFER) method. A coconut-based and coconut-oil-added solid-state cultivation using a Malaysian lipolytic Geotrichum candidum was used to convert the coconut oil into MCFAs-rich oil. Chemical characteristics of the modified coconut oils (MCOs) considering total medium chain glyceride esters were compared to those of the normal coconut oil using ELSD-RP-HPLC. Optimum amount of coconut oil hydrolysis was achieved at 29% moisture content and 10.14% oil content after 9 days of incubation, where the quantitative amounts of the modified coconut oil and MCFA were 0.330 mL/g of solid media (76.5% bioconversion) and 0.175 mL/g of solid media (53% of the MCO), respectively. MCOs demonstrated improved antibacterial activity mostly due to the presence of free lauric acid. The highest MCFAs-rich coconut oil revealed as much as 90% and 80% antibacterial activities against Staphylococcus aureus and Escherichia coli, respectively. The results of the study showed that DIMOSFER by a local lipolytic G. candidum can be used to produce MCFAs as natural, effective, and safe antimicrobial agent. The produced MCOs and MCFAs could be further applied in food and pharmaceutical industries.
  2. Vakhshiteh F, Allaudin ZN, Lila MA, Abbasiliasi S, Ajdari Z
    Mol Biotechnol, 2015 Jan;57(1):75-83.
    PMID: 25218408 DOI: 10.1007/s12033-014-9803-8
    Transplantation of islets of Langerhans that have been isolated from whole pancreas is an attractive alternative for the reversal of Type 1 diabetes. However, in vitro culture of isolated pancreatic islets has been reported to cause a decrease in glucose response over time. Hence, the improvement in islet culture conditions is an important goal in islet transplantation. Heme Oxygenase-1 (HO-1) is a stress protein that has been described as an inducible protein with the capacity of preventing apoptosis and cytoprotection via radical scavenging. Therefore, this study was aimed to assess the influence of endogenous HO-1 gene transfer on insulin secretion of caprine islets. The full-length cDNA sequence of Capra hircus HO-1 was determined using specific designed primers and rapid amplification of cDNA ends of pancreatic tissue. The HO-1 cDNA was then cloned into the prokaryotic expression vectors and transfected into caprine islets using lipid carriers. Efficiency of lipid carriers to transfect caprine islets was determined by flow cytometry. Insulin secretion assay was carried out by ovine insulin ELISA. The finding demonstrated that endogenous HO-1 gene transfer could improve caprine islet function in in vitro culture. Consequently, strategies using HO-1 gene transfer to islets might lead to better outcome in islet transplantation.
  3. Mehrbod P, Hair-Bejo M, Tengku Ibrahim TA, Omar AR, El Zowalaty M, Ajdari Z, et al.
    Int J Mol Med, 2014 Jul;34(1):61-73.
    PMID: 24788303 DOI: 10.3892/ijmm.2014.1761
    Influenza A virus is one of the most important health risks that lead to significant respiratory infections. Continuous antigenic changes and lack of promising vaccines are the reasons for the unsuccessful treatment of influenza. Statins are pleiotropic drugs that have recently served as anti-influenza agents due to their anti-inflammatory activity. In this study, the effect of simvastatin on influenza A-infected cells was investigated. Based on the MTT cytotoxicity test, hemagglutination (HA) assay and qPCR it was found that simvastatin maintained cell viability and decreased the viral load significantly as compared to virus-inoculated cells. The expression of important pro-inflammatory cytokines (tumor necrosis factor-α, interleukin-6 and interferon-γ), which was quantified using ELISA showed that simvastatin decreased the expression of pro-inflammatory cytokines to an average of 2-fold. Furthermore, the modulation of actin filament polymerization was determined using rhodamine staining. Endocytosis and autophagy processes were examined by detecting Rab and RhoA GTPase protein prenylation and LC3 lipidation using western blotting. The results showed that inhibiting GTPase and LC3 membrane localization using simvastatin inhibits influenza replication. Findings of this study provide evidence that modulation of RhoA, Rabs and LC3 may be the underlying mechanisms for the inhibitory effects of simvastatin as an anti-influenza compound.
  4. Ajdari Z, Rahman H, Shameli K, Abdullah R, Abd Ghani M, Yeap S, et al.
    Molecules, 2016 Mar 01;21(3):123.
    PMID: 26938520 DOI: 10.3390/molecules21030123
    The current study investigated the anticancer properties of gold nanoparticles (SG-stabilized AuNPs) synthesized using water extracts of the brown seaweed Sargassum glaucescens (SG). SG-stabilized AuNPs were characterized by ultraviolet-visible spectroscopy, transmission and scanning electron microscopy, and energy dispersive X-ray fluorescence spectrometry. The SG-stabilized AuNPs were stable and small at 3.65 ± 1.69 nm in size. The in vitro anticancer effect of SG-stabilized AuNPs was determined on cervical (HeLa), liver (HepG2), breast (MDA-MB-231) and leukemia (CEM-ss) cell lines using fluorescence microscopy, flow cytometry, caspase activity determination, and MTT assays. After 72 h treatment, SG-stabilized AuNPs was shown to be significant (p < 0.05) cytotoxic to the cancer cells in a dose- and time-dependent manner. The IC50 values of SG-stabilized AuNPs on the HeLa, HepG2, CEM-ss, MDA-MB-231 cell lines were 4.75 ± 1.23, 7.14 ± 1.45, 10.32 ± 1.5, and 11.82 ± 0.9 μg/mL, respectively. On the other hand, SG-stabilized AuNPs showed no cytotoxic effect towards the normal human mammary epithelial cells (MCF-10A). SG-stabilized AuNPs significantly (p < 0.05) arrest HeLa cell cycle at G2/M phase and significantly (p < 0.05) activated caspases-3 and -9 activities. The anticancer effect of SG-stabilized AuNPs is via the intrinsic apoptotic pathway. The study showed that SG-stabilized AuNPs is a good candidate to be developed into a chemotherapeutic compound for the treatment of cancers especially cervical cancer.
  5. Ajdari Z, Ebrahimpour A, Abdul Manan M, Hamid M, Mohamad R, Ariff AB
    J Biomed Biotechnol, 2011;2011:426168.
    PMID: 22190851 DOI: 10.1155/2011/426168
    Monacolins, as natural statins, form a class of fungal secondary metabolites and act as the specific inhibitors of HMG-CoA reductase. The interest in using the fermented products as the natural source of monacolins, instead of statin drugs, is increasing enormously with its increasing demand. In this study, the fermented products were produced by Monascus purpureus FTC5391 using submerged and solid state fermentations. Two commercial Monascus-fermented products were also evaluated for comparison. Improved methods of monacolins extraction and identification were developed for the assessment of monacolins in the fermented products. Methanol and ethanol were found to be the most favorable solvents for monacolins extraction due to their ability to extract higher amount of monacolin K and higher numbers of monacolin derivatives. Problem related to false-positive results during monacolins identification was solved by adding monacolin lactonization step in the assessment method. Using this improved method, monacolin derivatives were not detected in all Monascus-fermented products tested in this study, suggesting that their hypocholesterolemic effects may be due to other compounds other than monacolins.
  6. Ajdari Z, Abd Ghani M, Khan Ayob M, Bayat S, Mokhtar M, Abbasiliasi S, et al.
    ScientificWorldJournal, 2014;2014:252647.
    PMID: 24701147 DOI: 10.1155/2014/252647
    Hypercholesterolemia is one of the most common chronic diseases in human. Along with chemical therapy traditional medication is used as hypocholesterolemic remedy, however, with unfavorable side effects. Recently, Monascus fermented product (MFP) has become a popular hypocholesterolemic natural supplement. In the present study, the hypocholesterolemic activity of Monascus purpureus FTC5391 fermented product ethanolic extract (MFPe) was investigated in hypercholesterolemic rats. Results showed that MFPe not only reduced the serum total cholesterol (TC), LDL-C, TG concentration, and TC/HDL-C ratio but also increased the HDL-C. Further, solid phase extraction (SPE) was carried out to obtain the hypocholesterolemic bioactive fraction. The high polar fraction of SPE increased the HDL-C (42%) and decreased the TC (53.3%), LDL-C (47%), and TG (50.7%) levels as well as TC/HDL-C ratio (69.1%) in serum. The GC-MS results of the active fraction revealed two main compounds, isosorbide and erythritol, which act as coronary vasodilator compounds.
  7. Abbasiliasi S, Tan JS, Ibrahim TA, Kadkhodaei S, Ng HS, Vakhshiteh F, et al.
    Food Chem, 2014 May 15;151:93-100.
    PMID: 24423507 DOI: 10.1016/j.foodchem.2013.11.019
    A polymer-salt aqueous two-phase system (ATPS) consisting of polyethylene-glycol (PEG) with sodium citrate was developed for direct recovery of a bacteriocin-like inhibitory substance (BLIS) from a culture of Pediococcus acidilactici Kp10. The influences of phase composition, tie-line length (TLL), volume ratio (VR), crude sample loading, pH and sodium chloride (NaCl) on the partition behaviour of BLIS was investigated. Under optimum conditions of ATPS, the purification of BLIS was achieved at 26.5% PEG (8000)/11% sodium citrate with a TLL of 46.38% (w/w), VR of 1.8, and 1.8% crude load at pH 7 without the presence of NaCl. BLIS from P. acidilactici Kp10 was successfully purified by the ATPS up to 8.43-fold with a yield of 81.18%. Given that the operation of ATPS is simple, environmentally friendly and cost-effective, as it requires only salts and PEG, it may have potential for industrial applications in the recovery of BLIS from fermentation broth.
  8. Rahman HS, Rasedee A, How CW, Zeenathul NA, Chartrand MS, Yeap SK, et al.
    Int J Nanomedicine, 2015;10:1649-66.
    PMID: 25767386 DOI: 10.2147/IJN.S67113
    Cancer nanotherapy is progressing rapidly with the introduction of many innovative drug delivery systems to replace conventional therapy. Although the antitumor activity of zerumbone (ZER) has been reported, there has been no information available on the effect of ZER-loaded nanostructured lipid carrier (NLC) (ZER-NLC) on murine leukemia cells. In this study, the in vitro and in vivo effects of ZER-NLC on murine leukemia induced with WEHI-3B cells were investigated. The results from 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide, Hoechst 33342, Annexin V, cell cycle, and caspase activity assays showed that the growth of leukemia cells in vitro was inhibited by ZER-NLC. In addition, outcomes of histopathology, transmission electron microscopy, and Tdt-mediated dUTP nick-end labeling analyses revealed that the number of leukemia cells in the spleen of BALB/c leukemia mice significantly decreased after 4 weeks of oral treatment with various doses of ZER-NLC. Western blotting and reverse-transcription quantitative polymerase chain reaction assays confirmed the antileukemia effects of ZER-NLC. In conclusion, ZER-NLC was shown to induce a mitochondrial-dependent apoptotic pathway in murine leukemia. Loading of ZER in NLC did not compromise the anticancer effect of the compound, suggesting ZER-NLC as a promising and effective delivery system for treatment of cancers.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links