Displaying all 6 publications

Abstract:
Sort:
  1. Islam MS, Al-Majid AM, Barakat A, Soliman SM, Ghabbour HA, Quah CK, et al.
    Molecules, 2015 May 07;20(5):8223-41.
    PMID: 25961163 DOI: 10.3390/molecules20058223
    This paper describes an efficient and regioselective method for the synthesis of novel fluorinated spiro-heterocycles in excellent yield by cascade [5+1] double Michael addition reactions. The compounds 7,11-bis(4-fluorophenyl)-2,4-dimethyl- 2,4-diazaspiro[5.5] undecane-1,3,5,9-tetraone (3a) and 2,4-dimethyl-7,11-bis (4-(trifluoromethyl)phenyl)-2,4-diazaspiro[5.5]undecane-1,3,5,9-tetraone (3b) were characterized by single-crystal X-ray diffraction, FT-IR and NMR techniques. The optimized geometrical parameters, infrared vibrational frequencies and NMR chemical shifts of the studied compounds have also been calculated using the density functional theory (DFT) method, using Becke-3-Lee-Yang-Parr functional and the 6-311G(d,p) basis set. There is good agreement between the experimentally determined structural parameters, vibrational frequencies and NMR chemical shifts of the studied compounds and those predicted theoretically. The calculated natural atomic charges using NBO method showed higher polarity of 3a compared to 3b.The calculated electronic spectra are also discussed based on the TD-DFT calculations.
  2. Barakat A, Al-Majid AM, Soliman SM, Lotfy G, Ghabbour HA, Fun HK, et al.
    Molecules, 2015;20(11):20642-58.
    PMID: 26610441 DOI: 10.3390/molecules201119710
    The synthesis of the new diethyl ammonium salt of diethylammonium(E)-5-(1,5-bis(4-fluorophenyl)-3-oxopent-4-en-1-yl)-1,3-diethyl-4,6-dioxo-2-thioxohexaydropyrimidin-5-ide 3 via a regioselective Michael addition of N,N-diethylthiobarbituric acid 1 to dienone 2 is described. In 3, the carboanion of the thiobarbituric moiety is stabilized by the strong intramolecular electron delocalization with the adjacent carbonyl groups and so the reaction proceeds without any cyclization. The molecular structure investigations of 3 were determined by single-crystal X-ray diffraction as well as DFT computations. The theoretically calculated (DFT/B3LYP) geometry agrees well with the crystallographic data. The effect of fluorine replacement by chlorine atoms on the molecular structure aspects were investigated using DFT methods. Calculated electronic spectra showed a bathochromic shift of the π-π* transition when fluorine is replaced by chlorine. Charge decomposition analyses were performed to study possible interaction between the different fragments in the studied systems. Molecular docking simulations examining the inhibitory nature of the compound show an anti-diabetic activity with Pa (probability of activity) value of 0.229.
  3. Barakat A, Islam MS, Al-Majid AM, Ghabbour HA, Fun HK, Javed K, et al.
    Bioorg Med Chem, 2015 Oct 15;23(20):6740-8.
    PMID: 26381063 DOI: 10.1016/j.bmc.2015.09.001
    We describe here the synthesis of dihydropyrimidines derivatives 3a-p, and evaluation of their α-glucosidase enzyme inhibition activities. Compounds 3b (IC50=62.4±1.5 μM), 3c (IC50=25.3±1.26 μM), 3d (IC50=12.4±0.15 μM), 3e (IC50=22.9±0.25 μM), 3g (IC50=23.8±0.17 μM), 3h (IC50=163.3±5.1 μM), 3i (IC50=30.6±0.6 μM), 3m (IC50=26.4±0.34 μM), and 3o (IC50=136.1±6.63 μM) were found to be potent α-glucosidase inhibitors in comparison to the standard drug acarbose (IC50=840±1.73 μM). The compounds were also evaluated for their in vitro cytotoxic activity against PC-3, HeLa, and MCF-3 cancer cell lines, and 3T3 mouse fibroblast cell line. All compounds were found to be non cytotoxic, except compounds 3f and 3m (IC50=17.79±0.66-20.44±0.30 μM), which showed a weak cytotoxic activity against the HeLa, and 3T3 cell lines. In molecular docking simulation study, all the compounds were docked into the active site of the predicted homology model of α-glucosidase enzyme. From the docking result, it was observed that most of the synthesized compounds showed interaction through carbonyl oxygen atom and polar phenyl ring with active site residues of the enzyme.
  4. Barakat A, Ghabbour HA, Al-Majid AM, Soliman SM, Ali M, Mabkhot YN, et al.
    Molecules, 2015;20(7):13240-63.
    PMID: 26197312 DOI: 10.3390/molecules200713240
    The synthesis of 2,6-bis(hydroxy(phenyl)methyl)cyclohexanone 1 is described. The molecular structure of the title compound 1 was confirmed by NMR, FT-IR, MS, CHN microanalysis, and X-ray crystallography. The molecular structure was also investigated by a set of computational studies and found to be in good agreement with the experimental data obtained from the various spectrophotometric techniques. The antimicrobial activity and molecular docking of the synthesized compound was investigated.
  5. Barakat A, Al-Majid AM, Soliman SM, Mabkhot YN, Ali M, Ghabbour HA, et al.
    Chem Cent J, 2015;9:35.
    PMID: 26106444 DOI: 10.1186/s13065-015-0112-5
    Chalcones (1,3-diaryl-2-propen-1-ones, represent an important subgroup of the polyphenolic family, which have shown a wide spectrum of medical and industrial application. Due to their redundancy in plants and ease of preparation, this category of molecules has inspired considerable attention for potential therapeutic uses. They are also effective in vivo as anti-tumor promoting, cell proliferating inhibitors and chemo preventing agents.
  6. Barakat A, Al-Najjar HJ, Al-Majid AM, Soliman SM, Mabkhot YN, Shaik MR, et al.
    PMID: 25827772 DOI: 10.1016/j.saa.2015.03.016
    The synthesis and spectral characterization of the 5-(2,6-dichlorobenzylidene)pyrimidine-2,4,6(1H,3H,5H)-trione;3 was reported. The solid state molecular structure of 3 was studied using X-ray crystallography. The relative stabilities of the seven possible isomers of 3 were calculated by DFT/B3LYP method using 6-311 G(d,p) basis set. The calculated total energies and thermodynamic parameters were used to predict the relative stabilities of these isomers. The effect of solvent polarity on the relative stability of these isomers was studied at the same level of theory using PCM. It was found that the keto form, (T0), is the most stable isomer both in the gaseous state and solution. In solution, the calculated total energies of all isomers are decreased indicating that all isomers are stabilized by the solvent effect. The vibrational spectra of the most stable isomer, 3(T0) are calculated using the same level of theory and the results are compared with the experimentally measured FTIR spectra. Good correlation was obtained between the experimental and calculated vibrational frequencies (R(2)=0.9992). The electronic spectra of 3(T0) in gas phase as well as in solutions were calculated using the TD-DFT method. All the predicted electronic transitions showed very little spectral shifts and increase in the intensity of absorption due to solvent effect. Also the (1)H- and (13)C-NMR chemical shifts of the stable isomer were calculated and the results were correlated with the experimental data. Good correlations between the experimental and calculated chemical shifts were obtained.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links