Displaying all 3 publications

Abstract:
Sort:
  1. Alshwyeh HA, Al-Sheikh WMS, Rasedee A, Alnasser SM, Al-Qubaisi MS, Ibrahim WN
    Mol Cell Oncol, 2024;11(1):2299046.
    PMID: 38196561 DOI: 10.1080/23723556.2023.2299046
    In this study, we investigated the effects of an ethanolic extract of Mangifera indica L. kernel on the viability and proliferation of human lung cancer cells. We utilized MTT and BrdU cell proliferation assays, morphological assessments, cell cycle analyses, and apoptosis assays to investigate the extract's effects on lung cancer (A549 and NCI-H292) and normal lung (MRC-5) cells. The extract demonstrated a toxicity toward cancer cells compared to normal cells with dose-dependent anti-proliferative effect on lung cancer cells. The extract also caused differential effects on the cell cycle, inducing G0/G1 arrest and increasing the Sub-G1 population in both lung cancer and normal lung cells. Notably, the extract induced loss of membrane integrity, shrinkage, membrane blebbing, and apoptosis in lung cancer cells, while normal cells exhibited only early apoptosis. Furthermore, the extract exhibited higher toxicity towards NCI-H292 cells, followed by A549 and normal MRC-5 cells in decreasing order of potency. Our results suggest that the ethanolic extract of M. indica L. kernel has significant potential as a novel therapeutic agent for treating lung cancer cells, given its ability to induce apoptosis in cancer cell lines while causing minimal harm to normal cells.
  2. Al-Fahdawi MQ, Al-Doghachi FAJ, Abdullah QK, Hammad RT, Rasedee A, Ibrahim WN, et al.
    Biomed Pharmacother, 2021 Jun;138:111483.
    PMID: 33744756 DOI: 10.1016/j.biopha.2021.111483
    The aim of this study was to prepare, characterize, and determine the in vitro anticancer effects of platinum-doped magnesia (Pt/MgO) nanoparticles. The chemical compositions, functional groups, and size of nanoparticles were determined using X-ray diffraction, Fourier transform infrared spectroscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, and scanning electron microscopy. Pt/MgO nanoparticles were cuboid and in the nanosize range of 30-50 nm. The cytotoxicity of Pt/MgO nanoparticles was determined via the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay on the human lung and colonic cancer cells (A549 and HT29 respectively) and normal human lung and colonic fibroblasts cells (MRC-5 and CCD-18Co repectively). The Pt/MgO nanoparticles were relatively innocuous to normal cells. Pt/MgO nanoparticles downregulated Bcl-2 and upregulated Bax and p53 tumor suppressor proteins in the cancer cells. Pt/MgO nanoparticles also induced production of reactive oxygen species, decreased cellular glutathione level, and increased lipid peroxidation. Thus, the anticancer effects of Pt/MgO nanoparticles were attributed to the induction of oxidative stress and apoptosis. The study showed the potential of Pt/MgO nanoparticles as an anti-cancer compound.
  3. Al-Qubaisi MS, Al-Abboodi AS, Alhassan FH, Hussein-Al-Ali S, Flaifel MH, Eid EEM, et al.
    Saudi Pharm J, 2022 Apr;30(4):347-358.
    PMID: 35527823 DOI: 10.1016/j.jsps.2022.02.002
    In this study, we formulated Thymoquinone-loaded nanocomposites (TQ-NCs) using high-pressure homogenizer without sodium tripolyphosphate. The TQ-NCs were characterized and their anti-inflammatory determined by the response of the LPS-stimulated macrophage RAW 264.7 cells in the production of nitric oxide, prostaglandin E2, tumor necrosis factor-α, interleukin-6, and interleukin-1β. The physicochemical properties of TQ-NC were determined using different machines. TQ was fully incorporated in the highly thermal stable nanoparticles. The nanoparticles showed rapid release of TQ in the acidic medium of the gastric juice. In medium of pH 6.8, TQ-NC exhibited sustained release of TQ over a period of 100 h. The results suggest that TQ-NC nanoparticles have potential application as parenterally administered therapeutic compound. TQ-NC effectively reduce production of inflammatory cytokines by the LPS-stimulated RAW 264.7 cells, indicating that they have anti-inflammatory properties. In conclusion, TQ-NC nanoparticles have the characteristics of efficient carrier for TQ and an effective anti-inflammatory therapeutic compound.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links