PATIENT CONCERNS: The patients had limited bone height and proximity to the IAN, making traditional implant techniques challenging. Concerns included the risk of nerve damage and difficulties in achieving optimal implant placement due to anatomical constraints.
DIAGNOSES: Both patients had severe bone resorption and insufficient bone height in the posterior mandible, with concerns about IAN positioning. The first patient had grade III mobility in tooth #46 with a periapical infection, while the second had bilateral posterior mandibular pain and grade III mobility in tooth #47.
INTERVENTIONS: Implants were placed using DNS, allowing precise planning and real-time guidance during surgery. Based on cone beam computed tomography, preoperative planning assessed bone height and IAN proximity. DNS ensured accurate implant placement, avoiding nerve interference, while bone grafts and growth factors were applied for healing.
OUTCOMES: Both cases showed successful implant placement without complications like nerve damage or implant misplacement. Follow-up cone beam computed tomography scans confirmed well-positioned implants, with minimal bone resorption in the first case over 2 years and stable conditions in the second case after 6 months.
LESSONS: This series highlights DNS's effectiveness in improving implant accuracy and reducing nerve injury risks, suggesting its value in complex dental implant surgeries.
MATERIALS AND METHODS: Forty chronic periodontitis patients completed this study and received periodontal treatment comprising scaling and root planing plus ultrasonic debridement. Clinical data were recorded at baseline, 6 weeks (R1) after treatment completion (full-mouth or quadrant-scaling and root planing) and 25 weeks after baseline (R2). Serum samples were taken at each time point and cytokines concentrations determined by ELISA.
RESULTS: Following treatment, statistically significant reductions were noted in clinical parameters. However, IL-17A and IL-17E concentrations were significantly greater than baseline values before- and after-adjusting for smoking. The IL-17A:IL-17E ratio was lower at R1 and R2. Serum IL-6 and TNF levels were significantly lower at R1 only. Also exclusively at R1, serum IL-17A and IL-17E correlated positively with clinical parameters, while the IL-17A:IL-17E ratio correlated negatively with probing pocket depth and clinical attachment.
CONCLUSION: Increased serum IL-17E and a reduced IL-17A:IL-17E ratio may be indicative and/or a consequence of periodontal therapy. Therefore, the role of IL-17E in periodontal disease progression and the healing process is worthy of further investigation.
CLINICAL RELEVANCE: IL-17E may be a valuable biomarker to monitor the healing process following periodontal treatment as increased IL-17E levels and a reduced IL-17A:IL-17E ratio could reflect clinical improvements post-therapy. Therefore, monitoring serum IL-17E might be useful to identify individuals who require additional periodontal treatment.
METHODS: There were 104 participants in the study: 19 healthy volunteers, 23 patients with periodontitis, 28 patients with T1DM, and 34 patients with T1DM and periodontitis. Levels of blood glucose/glycated hemoglobin (International Federation of Clinical Chemistry [IFCC]) were determined by high-performance liquid chromatography. Levels of IL-6, IL-8, and CXCL5 in plasma were determined by enzyme-linked immunosorbent assay (ELISA). In vitro stimulation of OKF6/TERT-2 cells and THP-1 monocytes was performed with combinations of AGE and P. gingivalis LPS. Changes in expression of IL-6, IL-8, and CXCL5 were monitored by ELISA and real-time polymerase chain reaction.
RESULTS: Patients with diabetes and periodontitis had higher plasma levels of IL-8 than patients with periodontitis alone. Plasma levels of IL-8 correlated significantly with IFCC units, clinical probing depth, and attachment loss. AGE and LPS, alone or in combination, stimulated IL-6, IL-8, and CXCL5 expression in both OKF6/TERT-2 cells and THP-1 monocytes.
CONCLUSIONS: Elevated plasma levels of IL-8 potentially contribute to the cross-susceptibility between periodontitis and T1DM. P. gingivalis LPS and AGE in combination caused significantly greater expression of IL-6, IL-8, and CXCL5 from THP-1 monocytes and OKF6/TERT-2 cells than LPS alone.