MATERIAL & METHOD: 61 road traffic accidental death cases underwent both PMCT and conventional autopsy. The imaging findings were compared to the conventional autopsy findings.
RESULT: The sensitivity, specificity, PPV and NPV for liver injuries in PMCT was 71%, 82%, 68% and 85% while that of splenic injuries was 73%, 80%, 55% and 90% respectively. The accuracy of PMCT scan was 79% for both liver and splenic injuries. There is strong association between lower left ribs fracture and splenic injury (p=0.005) and significant association between positive liver and splenic PMCT finding and intraabdominal fatal injury (p=0.037).
CONCLUSION: In conclusion PMCT has high specificity and NPV for liver and splenic injuries; however the sensitivity and PPV are low. The overall accuracy is not high enough to enable PMCT to be used as a replacement for conventional autopsy; however it is a useful complementary examination and has potential to be used as decision making tool for selective internal autopsy.
AIM: To investigate the potential anti-cancer activity of pomegranate peel on growth and cell death mechanisms of chronic myeloid leukemic (CML) cells, K562.
MATERIALS AND METHODS: Punica granatum peels extract (PGPE) was extracted by successive ethanol extraction, 80% (v/v), freeze dried, diluted to 20 mg/mL working concentration and was subjected to phytochemical screening. K562 cell was treated with crude PGPE for 72 h. Following IC50 concentration, the apoptosis, cell cycle and protein analysis were evaluated. Cell growth inhibition assay was performed by conventional trypan blue exclusion assay. Apoptosis and cell cycle were analyzed by flow-cytometry using BD apoptosis and cell cycle kits and protein analysis by western blotting. All the results are expressed as mean ± standard error of mean of three independent experiments. Statistical analysis was performed by nonparametric Mann-Whitney U-test.
RESULTS: Results demonstrated that PGPE promotes growth inhibition of K562 cells mainly via G2/M phase arrest while still conserving apoptosis induction, but at a lower rate. Apoptosis activities were proposed by the up-regulation of caspases and cytochrome c with an elevated level of p21 and p53.
CONCLUSION: PGPE caused an inhibition in cell proliferation of CML cell mainly by cell cycle arrest.
METHODS: Rats (n=36) were divided into six groups. Group I served as a normal control. Groups II-VI were sensitised with severe allergens (OVA and LPS) on day 7, 14 and 21, followed by OVA and LPS challenge for 30 min three times/week for 3 weeks. Group II acted as an asthmatic disease control and received only vehicle. On the other hand, groups III-V received embelin (12.5, 25 and 50 mg/kg, P.O. respectively) while group VI received a standard dexamethasone (2.5 mg/kg, P.O.) for 15 days from day 27. Lung function parameters, including the respiratory rate, tidal volume and airflow rate were measured at the end of the experiment (day 42). The total and differential counts of leukocytes in the blood and bronchoalveolar fluid (BALF) were calculated. Th2-mediated serum pro-inflammatory cytokines such as interleukin (IL)-4, IL-5 and IL-13 levels were analyzed. At the end of the study protocol, the lung tissues were removed for a histopathology study. Additionally, a molecular docking simulation on embelin and standard dexamethasone was applied to support the in vivo findings.
RESULTS: Significant inhibition of eosinophils, neutrophils, lymphocytes and monocytes in the blood and the BALF was seen in the groups, which received embelin (25 and 50 mg/kg) and dexamethasone (2.5 mg/kg). Moreover, the lung function parameters were normalised by embelin (25 and 50 mg/kg) treatment significantly. The lung histopathological changes confirmed the protective effect of embelin against severe airway inflammation. The docking findings indicated good binding efficacy of embelin to IL-13.
CONCLUSION: Overall, our findings indicate that embelin can alleviate severe airway inflammation in OVA-LPS-induced model of allergic asthma occurring by suppression of Th2-mediated immune response. Due to its promising anti-asthmatic effect, it is recommended that embelin should be investigated in clinical trials against asthma. It should also be further explored against COVID-19 or COVID-like diseases due to its ameliorative effects on cytokines and immune cell infiltration.