Displaying all 13 publications

Abstract:
Sort:
  1. Azeem B, KuShaari K, Man ZB, Basit A, Thanh TH
    J Control Release, 2014 May 10;181:11-21.
    PMID: 24593892 DOI: 10.1016/j.jconrel.2014.02.020
    With the exponential growth of the global population, the agricultural sector is bound to use ever larger quantities of fertilizers to augment the food supply, which consequently increases food production costs. Urea, when applied to crops is vulnerable to losses from volatilization and leaching. Current methods also reduce nitrogen use efficiency (NUE) by plants which limits crop yields and, moreover, contributes towards environmental pollution in terms of hazardous gaseous emissions and water eutrophication. An approach that offsets this pollution while also enhancing NUE is the use of controlled release urea (CRU) for which several methods and materials have been reported. The physical intromission of urea granules in an appropriate coating material is one such technique that produces controlled release coated urea (CRCU). The development of CRCU is a green technology that not only reduces nitrogen loss caused by volatilization and leaching, but also alters the kinetics of nitrogen release, which, in turn, provides nutrients to plants at a pace that is more compatible with their metabolic needs. This review covers the research quantum regarding the physical coating of original urea granules. Special emphasis is placed on the latest coating methods as well as release experiments and mechanisms with an integrated critical analyses followed by suggestions for future research.
  2. Shereen MK, Khattak MI, Zubir F, Basit A
    PLoS One, 2022;17(1):e0260407.
    PMID: 35041686 DOI: 10.1371/journal.pone.0260407
    Reconfigurable antennas have received much attention in RF energy harvesting models owing to their selectivity for operating frequency and polarization. The characteristic of having frequency selectivity and polarization selectivity can be termed as frequency diversity and polarization diversity, respectively. This paper investigates a rectenna device with a new proposed topology in order to eliminate coupling between input and output lines and increase the rectification efficiency with the use of single feed hybrid reconfigurable antenna, switch between 28GHz and 38GHz frequency. Moreover, it is designed to charge a rechargeable battery of 1watt(W). The Reconfiguration mechanism is realized by electronically controlling different states of Switches. PIN Diode (as RLC Equivalent circuit) is used as a switch for ON/OFF states. This antenna mainly comprises rectangular shaped patches (28GHz and 38GHz) with Triango-Truncated edge at the corners. Eighteen PIN Diodes are placed symmetrically throughout the antenna presenting as, S1 & S2 for frequency reconfiguration, S3 to S6 & S7 to S10 connects Triango Truncated edge at the corners for polarization reconfiguration, and for radiation pattern reconfiguration at S11 to S14 & S15 to S18 has been used. The proposed antenna model is capable of simultaneously changing, the radiation patterns as clock and anti-clockwise directions at ±90-degree shift in E and H planes, circularly polarized (CP) states among, Linear Polarization (LP), Right Hand Circularly Polarization (RHCP), and Left Hand Circularly Polarization (LHCP). The current design describes using single antenna for energy harvesting and 5G mobile communication application. This would lead to higher output currents, leading to the ability to efficiently charge a wide variety of batteries. A fully functional prototype has been designed, fabricated and its compound reconfiguration characteristics have been validated for simulated and measured results. For validation of results, the experimental results and the simulation results from the proposed mathematical model were made into comparison, and excellent correlation between the measured and simulated results was obtained.
  3. Abouammo MD, Narayanan MS, Alsavaf MB, Alwabili M, Gosal JS, Bhuskute GS, et al.
    PMID: 38506519 DOI: 10.1227/ons.0000000000001119
    BACKGROUND AND OBJECTIVES: Expanded endonasal approaches (EEAs) have proven safe and effective in treating select petrous apex (PA) pathologies. Angled endoscopes and instruments have expanded indications for such approaches; however, the complex neurovascular anatomy surrounding the petrous region remains a significant challenge. This study evaluates the feasibility, anatomic aspects, and limitations of a contralateral nasofrontal trephination (CNT) route as a complementary corridor improving access to the PA.

    METHODS: Expanded endonasal and CNT approaches to the PA were carried out bilaterally in 15 cadaveric heads with endovascular latex injections. The distance to the PA, angle between instruments through the 2 approach portals, and surgical freedom were measured and compared.

    RESULTS: Three-dimensional DICOM-based modeling and visualization indicate that the CNT route reduces the distance to the target located within the contralateral PA by an average of 3.33 cm (19%) and affords a significant increase in the angle between instruments (15.60°; 54%). Furthermore, the vertical vector of approach is improved by 28.97° yielding a caudal reach advantage of 2 cm. The area of surgical freedom afforded by 3 different approaches (endonasal, endonasal with an endoscope in CNT portal, and endonasal with an instrument in CNT portal) was compared at 4 points: the dural exit point of the 6th cranial nerve, jugular foramen, foramen lacerum, and petroclival fissure. The mean area of surgical freedom provided by both approaches incorporating the CNT corridor was superior to EEA alone at each of the surgical targets (P =

  4. Ahmad N, Javaid A, Basit A, Afridi AK, Khan MA, Ahmad I, et al.
    Int J Tuberc Lung Dis, 2015 Sep;19(9):1109-14, i-ii.
    PMID: 26260834 DOI: 10.5588/ijtld.15.0167
    Although Pakistan has a high burden of multidrug-resistant tuberculosis (MDR-TB), little is known about the management and treatment outcomes of MDR-TB patients in Pakistan.
  5. Ahmad N, Javaid A, Syed Sulaiman SA, Basit A, Afridi AK, Jaber AA, et al.
    PLoS One, 2016 Jul 28;11(7):e0159560.
    PMID: 27467560 DOI: 10.1371/journal.pone.0159560
    At present, within the management of multidrug resistant tuberculosis (MDR-TB) much attention is being paid to the traditional microbiological and clinical indicators. Evaluation of the impact of MDR-TB treatment on patients' Health Related Quality of Life (HRQoL) has remained a neglected area.
  6. Javaid A, Ahmad N, Afridi AK, Basit A, Khan AH, Ahmad I, et al.
    Am J Trop Med Hyg, 2018 06;98(6):1629-1636.
    PMID: 29611497 DOI: 10.4269/ajtmh.17-0936
    To evaluate the predictive value of time to sputum culture conversion (SCC) in predicting cure and factors associated with time to SCC and cure in multidrug-resistant tuberculosis (MDR-TB) patients, a retrospective study was conducted at programmatic management unit of drug resistant tuberculosis (TB), Peshawar. A total of 428 pulmonary MDR-TB patients enrolled at the study site from January 1, 2012 to August 31, 2014 were followed until treatment outcome was recorded. Survival analysis using Cox proportional hazards model and multivariate binary logistic regression were, respectively, used to identify factors associated with time to SCC and cure. A P value < 0.05 was considered statistically significant. Overall, 90.9% patients achieved SCC, and 76.9% were cured. Previous use of second-line drugs (SLDs) (hazard ratio [HR] = 0.637; 95% confidence interval [CI] = 0.429-0.947), ofloxacin resistance (HR = 0.656; 95% CI = 0.522-0.825) and lung cavitation (HR = 0.744; 95% CI = 0.595-0.931) were significantly associated with time to SCC. In predicting cure, sensitivities of SCC at 2, 4, and 6 months were 64.1% (95% CI = 58.69-69.32), 93.0% (95% CI = 89.69-95.52), and 97.6% (95% CI = 95.27-98.94), respectively, whereas specificities were 67.7% (95% CI = 57.53-76.73), 51.5% (95% CI = 41.25-61.68), and 44.4% (95% CI = 34.45-54.78), respectively. Furthermore, patients' age of 41-60 (odds ratio [OR] = 0.202; 95% CI = 0.067-0.605) and > 60 years (OR = 0.051; 95% CI = 0.011-0.224), body weight > 40 kg (OR = 2.950; 95% CI = 1.462-5.952), previous SLD use (OR = 0.277; 95% CI = 0.097-0.789), lung cavitation (OR = 0.196; 95% CI = 0.103-0.371) and ofloxacin resistance (OR = 0.386; 95% CI = 0.198-0.749) were significantly associated with cure. Association of SCC with cure was substantially stronger at 6 months (OR = 32.10; 95% CI = 14.34-71.85) than at 4 months (OR = 14.13; 95% CI = 7.92-25.21). However in predicting treatment outcomes, the combined sensitivity and specificity of SCC at 4 months was comparable to SCC at 6 months. Patients with risk factors for delayed SCC were also at high risk of unsuccessful outcomes.
  7. Zhang G, Basit A, Khan MI, Daraz A, Saqib N, Zubir F
    Micromachines (Basel), 2023 Apr 17;14(4).
    PMID: 37421099 DOI: 10.3390/mi14040866
    The key elements used for receiving and processing signals in communication systems are the bandpass filters. Initially, a common operating mechanism was applied for the design of broadband filters, i.e., by cascading low-pass filters or high-pass filters using multiple line resonators with length quarter-half- or full-wavelength with central frequency, but using these approaches, the design topology becomes expensive and complex. The above mechanisms can be possibly overcome using a planar microstrip transmission line structure due to its simple design fabrication procedure and low cost. So, pointing out the above problems in bandpass filters such as low-cost, low insertion loss, and good out-of-band performance, this article presents a broadband filter with multifrequency suppression capability at 4.9 GHz, 8.3 GHz, and 11.5 GHz using a T-shaped shorted stub-loaded resonator with a central square ring coupled to the basic broadband filter. Initially, the C-shaped resonator is utilized for the formation of a stopband at 8.3 GHz for a satellite communication system, and then a shorted square ring resonator is added to the existing C-shaped structure for the realization of two more stopbands at 4.9 GHz and 11.5 GHz for 5G (WLAN 802.11j) communication, respectively. The overall circuit area covered with the proposed filter is 0.52 λg × 0.32 λg (λg is the wavelength of the feed lines at frequency 4.9 GHz). All the loaded stubs are folded in order to save the circuit area, which is an important requirement of next-generation wireless communication systems. The proposed filter has been analyzed using a well-known transmission line theory, even-odd-mode, and simulated with the 3D software HFSS. After the parametric analysis, some attractive features were obtained, i.e., compact structure, simple planar topology, low insertion losses of 0.4 dB over the entire band, good return loss greater than 10 dB, and independently controlled mutli stopbands, which make the proposed design unique and can be used in various wireless communication system applications. Finally, a Rogers RO-4350 substrate is selected for the fabrication of the prototype using an LPKF S63 ProtoLaser machine and then measured using a ZNB20 vector network analyzer for matching the simulated and measured results. After testing the prototype, a good agreement was found between the results.
  8. Daraz A, Khan IA, Basit A, Malik SA, AlQahtani SA, Zhang G
    Heliyon, 2024 Mar 30;10(6):e28073.
    PMID: 38524527 DOI: 10.1016/j.heliyon.2024.e28073
    Recent widespread connections of renewable energy resource (RESs) in place of fossil fuel supplies and the adoption of electrical vehicles in place of gasoline-powered vehicles have given birth to a number of new concerns. The control architecture of linked power networks now faces an increasingly pressing challenge: tie-line power fluctuations and reducing frequency deviations. Because of their nature and dependence on external circumstances, RESs are analogous to continually fluctuating power generators. Using a fractional order-based frequency regulator, this work presents a new method for improving the frequency regulation in a two-area interconnected power system. In order to deal with the frequency regulation difficulties of the hybrid system integrated with RES, the suggested controller utilizes the modified form of fractional order proportional integral derivative (FOPID) controller known as FOI-PDN controller. The new proposed controllers are designed using the white shark optimizer (WSO), a current powerful bioinspired meta heuristic algorithm which has been motivated by the learning abilities of white sharks when actively hunting in the environment. The suggested FOI-PDN controller's performance was compared to that of various control methodologies such as FOPID, and PID. Furthermore, the WSO findings are compared to those of other techniques such as the salp swarm algorithm, sine cosine algorithm and fitness dependent optimizer. The recommended controller and design approach have been tested and validated at different loading conditions and different circumstances, as well as their robustness against system parameter suspicions. The simulation outcomes demonstrate that the WSO-based tuned FOI-PDN controller successfully reduces peak overshoot by 73.33%, 91.03%, and 77.21% for region-2, region-1, and link power variation respectively, and delivers minimum undershoot of 89.12%, 83.11%, and 78.10% for both regions and tie-line. The obtained findings demonstrate the new proposed controller's stable function and frequency controlling performance with optimal controller parameters and without the requirement for a sophisticated design process.
  9. Daraz A, Alrajhi H, Basit A, Afzal AR, Alahmadi ANM, Khan IA
    Sci Rep, 2024 Apr 24;14(1):9400.
    PMID: 38658673 DOI: 10.1038/s41598-024-60028-3
    Maintaining a power balance between generation and demand is generally acknowledged as being essential to maintaining a system frequency within reasonable bounds. This is especially important for linked renewable-based hybrid power systems (HPS), where disruptions are more likely to occur. This paper suggests a prominent modified "Fractional order-proportional-integral with double derivative (FOPIDD2) controller" as an innovative HPS controller in order to navigate these obstacles. The recommended control approach has been validated in power systems including wind, reheat thermal, solar, and hydro generating, as well as capacitive energy storage and electric vehicle. The improved controller's performance is evaluated by comparing it to regular FOPID, PID, and PIDD2 controllers. Furthermore, the gains of the newly structured FOPIDD2 controller are optimized using a newly intended algorithm terms as squid game optimizer (SGO). The controller's performance is compared to benchmarks such as the grey wolf optimizer (GWO) and jellyfish search optimization. By comparing performance characteristics such as maximum frequency undershoot/overshoot, and steadying time, the SGO-FOPIDD2 controller outperforms the other techniques. The suggested SGO optimized FOPIDD2 controller was analyzed and validated for its ability to withstand the influence of power system parameter uncertainties under various loading scenarios and situations. Without any complicated design, the results show that the new controller can work steadily and regulate frequency with an appropriate controller coefficient.
  10. Basit A, Ahmad N, Khan AH, Javaid A, Syed Sulaiman SA, Afridi AK, et al.
    PLoS One, 2014;9(4):e93206.
    PMID: 24705411 DOI: 10.1371/journal.pone.0093206
    Various studies have reported culture conversion at two months as a predictor of successful treatment outcome in multidrug-resistant tuberculosis (MDR-TB).
  11. Aimen A, Basit A, Bashir S, Aslam Z, Shahid MF, Amjad S, et al.
    Saudi J Biol Sci, 2022 Jan;29(1):255-260.
    PMID: 35002416 DOI: 10.1016/j.sjbs.2021.08.086
    Phosphorous (P) plays the prominent role to promote the plants storage functions and structural roles, as it is recognized as a vital component of ADP, ATP, Cell wall as well as a part of DNA. Soils acts as the sink to supply P to plants because soil pH and its physical condition are the main factor which regulate the solubility and availability P element. Phosphorus is not deficient in Pakistani soils but its availability to plants is the serious matter of concern. A pot experiment was conducted to evaluate P dynamics in two different soil series of Pakistan (Bahawalpur and Lyallpur) using Maize as test crop. The treatments applied were T0: Control (without any fertilizer), T1: Recommended DAP @648 mg pot-1, T2: Half dose DAP @324 mg pot-1, T3: Recommended rate of TSP @900 mg pot-1, T4: Half dose TSP @450 mg pot-1. Soil analysis showed that Bahawalpur soil has sandy clay loam texture with 33% clay and Lyallpur series has sandy loam texture with 15.5% clay; furthermore, these soil contain 4.6 and 2.12% CaCO3 respectively. Results showed an increase in P concentration in roots (23 mg kg-1) with the application of half dose of TSP in Lyallpur series and lowest in Bahawalpur series (14.6 mg kg-1) at recommended dose of DAP. Concentration of P in shoots responded the same; increase at half dose of TSP (16.7 mg kg-1) and lowest at full dose of DAP in Bahawalpur series as (15.58 mg kg-1). Adsorbed P (17 mg kg-1) was recorded highest in Bahawalpur soil with more clay amount in pot with DAP application but lower in Lyallpur soil series (14 mg kg-1) with the application of applied TSP. The PUE was recorded highest in Lyallpur series with the application of half dose of TSP and it was 61% more than control and was Highest in Bahawalpur series was with the application of recommended dose of DAP is 72% more than control treatment. On estimation; results showed that applied sources made an increase in P availability than control, but TSP gave better P uptake than DAP unless of rates applied. Soil of Lyallpur series showed better uptake of P and response to applied fertilizers than Bahawalpur series which showed more adsorption of P by high clay and CaCO3 amount. Conclusively, the study suggested that soil series play a crucial role in choosing fertilizer source for field application.
  12. Hassanein M, Al-Arouj M, Hamdy O, Bebakar WMW, Jabbar A, Al-Madani A, et al.
    Diabetes Res Clin Pract, 2017 Apr;126:303-316.
    PMID: 28347497 DOI: 10.1016/j.diabres.2017.03.003
    Ramadan fasting is one of the five pillars of Islam and is compulsory for all healthy Muslims from puberty onwards. Exemptions exist for people with serious medical conditions, including many with diabetes, but a large number will participate, often against medical advice. Ensuring the optimal care of these patients during Ramadan is crucial. The International Diabetes Federation (IDF) and Diabetes and Ramadan (DAR) International Alliance have come together to deliver comprehensive guidelines on this subject. The key areas covered include epidemiology, the physiology of fasting, risk stratification, nutrition advice and medication adjustment. The IDF-DAR Practical Guidelines should enhance knowledge surrounding the issue of diabetes and Ramadan fasting, thereby empowering healthcare professionals to give the most up-to-date advice and the best possible support to their patients during Ramadan.
  13. Hassanein M, Afandi B, Yakoob Ahmedani M, Mohammad Alamoudi R, Alawadi F, Bajaj HS, et al.
    PMID: 35016991 DOI: 10.1016/j.diabres.2021.109185
    Fasting during Ramadan is one of the five pillars of Islam and is obligatory for all healthy Muslims from the age of puberty. Though individuals with some illness and serious medical conditions, including some people with diabetes, can be exempted from fasting, many will fast anyway. It is of paramount importance that people with diabetes that fast are given the appropriate guidance and receive proper care. The International Diabetes Federation (IDF) and Diabetes and Ramadan (DaR) International Alliance have come together to provide a substantial update to the previous guidelines. This update includes key information on fasting during Ramadan with type 1 diabetes, the management of diabetes in people of elderly ages and pregnant women, the effects of Ramadan on one's mental wellbeing, changes to the risk of macrovascular and microvascular complications, and areas of future research. The IDF-DAR Diabetes and Ramadan Practical Guidelines 2021 seek to improve upon the awareness, knowledge and management of diabetes during Ramadan, and to provide real-world recommendations to health professionals and the people with diabetes who choose to fast.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links