Displaying all 3 publications

Abstract:
Sort:
  1. Junaid HM, Batool M, Harun FW, Akhter MS, Shabbir N
    Crit Rev Anal Chem, 2020 Sep 08.
    PMID: 32897731 DOI: 10.1080/10408347.2020.1806703
    Spectacular color change during a chemical reaction is always fascinating. A variety of chemosensors including Schiff bases have been reported for selective as well as sensitive recognition of ions. This review explains the use of Schiff bases as color changing agents in the detection of anions. This magic of colors is attributed to change in the electronic structure of the system during reaction. Schiff base chemosensors are easy to synthesize, inexpensive and can be used for visual sensing of different ions. Development of Schiff base chemosensors is commonly based on the interactions between polar groups of Schiff bases and ionic species and the process of charge transfer, electron transfer and hydrogen bonding between Schiff bases and ionic species cause the color of the resultant to be changed. Therefore, designing of simple Schiff base chemosensors which are capable of selective sensing of different anions has attracted considerable interest. In particular, naked eye sensing through color change is important and useful since it allows sensing of ions through color changes without using any instrumental technique.HighlightsNaked eye sensors are of much interest these days due to their visual detection properties rather employing complex instrumentation.Optical sensors are sensitive, selective, cost effective and robust.The magic of color change is fascinating factor in detection by these sensors.The color change may be attributed by interaction between anion and Schiff base by different mechanism i.e. electron transfer, charge transfer, hydrogen bonding, ICT etc.LOD data is an evidence of their great efficiency.
  2. Afzal S, Batool M, Ch BA, Ahmad A, Uzair M, Afzal K
    Pharmacogn Mag, 2017 Jul;13(Suppl 2):S262-S265.
    PMID: 28808390 DOI: 10.4103/pm.pm_398_16
    AIMS: The study is conducted to evaluate the immunomodulatory, cytotoxicity, and antioxidant potential of Ziziphus mauritiana (Rhamnaceae). Phytochemical analysis of Z. mauritiana revealed the presence of alkaloids, anthraquinone glycoside, cardiac glycoside, saponin, tannin, and flavonoids.

    METHODOLOGY: The cytotoxicity of the plant Z. mauritiana was evaluated by brine shrimp lethality test. Antioxidant parameters such as superoxide dismutase (SOD), total antioxidant capacity (T-AOC), and malondialdehyde (MDA) levels were calculated in the plasma of rats after chronic administration of 400 mg/kg of Z. mauritiana for 6 weeks.

    RESULTS: The dichloromethane extract of the plant exhibited significant immunomodulatory activity, with inhibitory concentration 50% of 55.43 ± 7.9. The dichloromethane extracts of the plant showed 70% mortality at concentration 1000 μg/ml. SOD and T-AOC levels were increased while MDA level in the plasma was reduced in the plasma of rats treated with dichloromethane Z. mauritiana.

    CONCLUSION: This can be deduced that the root of Z. mauritiana has immunomodulatory, cytotoxic, and antioxidant potential.

    SUMMARY: Roots of Z. mauritiana was exhibited immunomodulator, cytotoxic and antioxidant activitiesZ. mauritiana showed potential antioxidant activity in rats Abbreviations used: SOD: Superoxide dismutase; T-AOC: Total antioxidant capacity; MDA: Malondialdehyde; ZMRD: Z. mauritiana root extract of dichloromethane fraction; LD50: Z. mauritiana root extract of methanol fraction ZMRM, lethal dose 50.

  3. Shafqat SS, Rizwan M, Batool M, Shafqat SR, Mustafa G, Rasheed T, et al.
    Chemosphere, 2023 Mar;318:137920.
    PMID: 36690256 DOI: 10.1016/j.chemosphere.2023.137920
    Water bodies are being polluted rapidly by disposal of toxic chemicals with their huge entrance into drinking water supply chain. Among these pollutants, heavy metal ions (HMIs) are the most challenging one due to their non-biodegradability, toxicity, and ability to biologically hoard in ecological systems, thus posing a foremost danger to human health. This can be addressed by robust, sensitive, selective, and reliable sensing of metal ions which can be achieved by Metal organic frameworks (MOF) based electrochemical sensors. In the present era, MOFs have caught greater interest in a variety of applications including sensing of hazardous pollutants such as heavy metal ions. So, in this review article, types, synthesis and working mechanism of MOF based sensors is explained to give general overview with updated literature. First time, detailed study is done for sensing of metal ions such as chromium, mercury, zinc, copper, manganese, palladium, lead, iron, cadmium and lanthanide by MOFs based electrochemical sensors. The use of MOFs as electrochemical sensors has attractive success story along with some challenges of the area. Considering these challenges, we attempted to highlight the milestone achieved and shortcomings along with future prospective of the MOFs for employing it in electrochemical sensing devices for HMIs. Finally, challenges and future prospects have been discussed to promote the development of MOFs-based sensors in future.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links