Displaying publications 1 - 20 of 62 in total

Abstract:
Sort:
  1. Bhassu S, Abd Rashid Z
    Genetika, 2009 Sep;45(9):1244-9.
    PMID: 19824545
    The population structure of Probarbus jullieni from Malaysia and Thailand stocks was based on seven microsatellite primers and truss network measurements. Truss morphometric measurements were made on Temoleh, Probarbus jullieni to demonstrate the degree of speciation that can be induced by both biotic and abiotic conditions and contribute to the definition of different stocks of Probarbus sp. At the momment no relevant information on stock definition has been produced recently concerning Probarbus spp., which is now in IUCN threatened red list. We also summarize the possible discriminant morphological characteristics that shows differentiation between Malaysia and Thailand stocks. We also compare the levels of morphology and genetic differences for Malaysian stocks throughout one year of sampling to determine whether sampling season and possible sexual dimorphism can be detected in this fishes. A total of 25 different alleles were found across the two populations by the seven microsatellites, of which 21 and 19 alleles were detected in Pahang, Malaysia and Thailand, respectively At the population level, the mean number of alleles of Pahang (3.4991) per locus was higher than that (3.1665) of Thailand. From both molecular and morphometric measurements showed that there were two distinct populations. However the differences between these two populations showed that they belong to the same species with least degree of separation
  2. Tiruvayipati S, Bhassu S
    Gut Pathog, 2016;8:23.
    PMID: 27231485 DOI: 10.1186/s13099-016-0105-5
    Vibrio parahaemolyticus is a Gram-negative halophilic bacterium which is found largely in estuarine and coastal waters. The bacteria has been a main focus in gastro-intestinal infections caused primarily due to the consumption of contaminated seafood. It was shown to survive in magnesium concentrations as high as 300 mM which are toxic to various other micro-organisms. Several genes of V. parahaemolyticus were studied, among which gbpA (N-acetyl glucosamine binding protein) was reported in Vibrio cholerae.
  3. Tiruvayipati S, Bhassu S
    Gut Pathog, 2016;8:15.
    PMID: 27114742 DOI: 10.1186/s13099-016-0097-1
    Macrobrachium rosenbergii is well-known as the giant freshwater prawn, and is a commercially significant source of seafood. Its production can be affected by various bacterial contaminations. Among which, the genus Vibrio shows a higher prevalence in aquatic organisms, especially M. rosenbergii, causing food-borne illnesses. Vibrio parahaemolyticus, a species of Vibrio is reported as the main causative of the early mortality syndrome. Vibrio parahaemolyticus infection in M. rosenbergii was studied previously in relation to the prawn's differentially expressed immune genes. In the current review, we will discuss the growth conditions for both V. parahaemolyticus and M. rosenbergii and highlight the role of magnesium in common, which need to be fully understood. Till date, there has not been much research on this aspect of magnesium. We postulate a model that screens a magnesium-dependent pathway which probably might take effect in connection with N-acetylglucosamine binding protein and chitin from V. parahaemolyticus and M. rosenbergii, respectively. Further studies on magnesium as an environment for V. parahaemolyticus and M. rosenbergii interaction studies will provide seafood industry with completely new strategies to employ and to avoid seafood related contaminations.
  4. Arockiaraj J, Bhassu S
    PMID: 21193051
    This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
  5. Bhassu S, Bakar Y, Rashid ZA
    Genetika, 2008 Aug;44(8):1145-7.
    PMID: 18825966
    Seven single locus dinucleotide microsatellite markers were developed to characterize an economically important sport fish and food fish in Malaysia and in Southeast Asia. They were obtained by using a rapid method namely the 5' anchored PCR enrichment protocol. The specific primers were designed to flank the repeat sequences and these were subsequently used to characterize 120 unrelated fish from Malaysia and 30 fishes from Indonesia. The number of alleles per locus ranged from 2 (SYKVJ1-11) to 6 (SYKVJ1-4) while the levels of heterozygosity ranged from 0.0472 (SYKVJ1-11) to 0.7745 (SYKVJ1-2).
  6. Mohd Ghani F, Bhassu S
    PeerJ, 2019;7:e8107.
    PMID: 31875142 DOI: 10.7717/peerj.8107
    The emergence of diseases such as white spot disease has become a threat to Penaeus monodon cultivation. Although there have been a few studies utilizing RNA-Seq, the cellular processes of host-virus interaction in this species remain mostly anonymous. In the present study, P. monodon was challenged with WSSV by intramuscular injection and survived for 12 days. The effect of the host gene expression by WSSV infection in the haemocytes, hepatopancreas and muscle of P. monodon was studied using Illumina HiSeq 2000. The RNA-Seq of cDNA libraries was developed from surviving WSSV-challenged shrimp as well as from normal healthy shrimp as control. A comparison of the transcriptome data of the two groups showed 2,644 host genes to be significantly up-regulated and 2,194 genes significantly down-regulated as a result of the infection with WSSV. Among the differentially expressed genes, our study discovered HMGB, TNFSF and c-Jun in P. monodon as new potential candidate genes for further investigation for the development of potential disease resistance markers. Our study also provided significant data on the differential expression of genes in the survived WSSV infected P. monodon that will help to improve understanding of host-virus interactions in this species.
  7. Soo TCC, Bhassu S
    PLoS One, 2023;18(1):e0280250.
    PMID: 36634148 DOI: 10.1371/journal.pone.0280250
    In recent years, shrimp aquaculture industry had grown significantly to become the major source of global shrimp production. Despite that, shrimp aquaculture production was impeded by various shrimp diseases over the past decades. Interestingly, different shrimp species demonstrated variable levels of immune strength and survival (immune-survival) ability towards different diseases, especially the much stronger immune-survival ability shown by the ancient shrimp species, Macrobrachium rosenbergii compared to other shrimp species. In this study, two important shrimp species, M. rosenbergii and Penaeus monodon (disease tolerant strain) (uninfected control and VpAHPND-infected) were compared to uncover the potential underlying genetic factors. The shrimp species were sampled, followed by RNA extraction and cDNA conversion. Five important immune-survival genes (C-type Lectin, HMGB, STAT, ALF3, and ATPase 8/6) were selected for PCR, sequencing, and subsequent genetics analysis. The overall genetic analyses conducted, including Analysis of Molecular Variance (AMOVA) and population differentiation, showed significant genetic differentiation (p<0.05) between different genes of M. rosenbergii and P. monodon. There was greater genetic divergence identified between HMGB subgroups of P. monodon (uninfected control and VpAHPND-infected) compared to other genes. Besides that, based on neutrality tests conducted, purifying selection was determined to be the main evolutionary driving force of M. rosenbergii and P. monodon with stronger purifying selection exhibited in M. rosenbergii genes. Potential balancing selection was identified for VpAHPND-infected HMGB subgroup whereas directional selection was detected for HMGB (both species) and ATPase 8/6 (only P. monodon) genes. The divergence times between M. rosenbergii and P. monodon genes were estimated through Bayesian molecular clock analysis, which were 438.6 mya (C-type Lectin), 1885.4 mya (HMGB), 432.6 mya (STAT), 448.1 mya (ALF3), and 426.4 mya (ATPase 8/6) respectively. In conclusion, important selection forces and evolutionary divergence information of immune-survival genes between M. rosenbergii and P. monodon were successfully identified.
  8. Soo TCC, Bhassu S
    Food Sci Nutr, 2022 Aug;10(8):2694-2709.
    PMID: 35959249 DOI: 10.1002/fsn3.2873
    Severe shrimp disease outbreaks have a destructive impact on shrimp aquaculture and its associated downstream food processing industries. Thus, it is essential to develop proper methods for shrimp disease control, which emphasizes the importance of food safety. In this study, we performed biochemical tests and gut microbiome analysis using uninfected control and Vp AHPND-infected Penaeus monodon samples. Biochemical tests were performed to assess the phenoloxidase (PO) activity, respiratory Burst (RB) activity, nitrite concentration, superoxide dismutase (SOD) activity, total hemocyte count (THC), and total protein concentrations. Overall, upregulations were detected in these biochemical tests, which showed the activation of the immune response in P. monodon during acute hepatopancreatic necrosis disease (AHPND) infection, especially at 6 hpi and 12 hpi. Besides that, shrimp gut samples were collected and pooled (n = 3), followed by DNA extraction, PCR amplification targeting the V3/V4 16S ribosomal RNA (rRNA) region, next-generation sequencing (NGS), and bioinformatics analysis. Proteobacteria was the most abundant phylum in both samples. The Rhodobacteraceae family and Maritimibacter genus were proposed to be vital forshrimp health maintenance. Vp AHPND bacterial colonization and secondary Vibrio infections were postulated to have occurred based on the higher abundances of Vibrionaceae family and Vibrio genus in the Vp AHPND-infected sample. Firmicutes phylum together with Photobacterium and Aliiroseovarius genera were inferred to be pathogenic or related factors of AHPND infections. In conclusion, physiology (immune response activation) and gut microbiome changes of disease tolerant P. monodon during AHPND infection were identified. Both biochemical tests and 16S rRNA analysis are proposed as a combined strategy for shrimp health diagnosis for ensuring shrimp health maintenance, disease control, and food safety.
  9. Soo TCC, Bhassu S
    PLoS One, 2021;16(10):e0258655.
    PMID: 34653229 DOI: 10.1371/journal.pone.0258655
    Diseases have remained the major issue for shrimp aquaculture industry for decades by which different shrimp species demonstrated alternative disease resistance or tolerance. However, there had been insufficient studies on the underlying host mechanisms of such phenomenon. Hence, in this study, the main objective involves gaining a deeper understanding into the functional importance of shrimp STAT gene from the aspects of expression, sequence, structure, and associated genes. STAT gene was selected primarily because of its vital signalling roles in stress, endocrine, and immune response. The differential gene expressions of Macrobrachium rosenbergii STAT (MrST) and Penaeus monodon STAT (PmST) under White Spot Syndrome Virus (WSSV) and Vibrio parahaemolyticus/VpAHPND infections were identified through qPCR analysis. Notably, during both pathogenic infections, MrST demonstrated significant gene expression down-regulations (during either early or later post-infection time points) whereas PmST showed only significant gene expression up-regulations. Important sequence conservation or divergence was highlighted through STAT sequence comparison especially amino acid alterations at 614 aa [K (Lysine) to E (Glutamic Acid)] and 629 aa [F (Phenylalanine) to V (Valine)] from PmST (AY327491.1) to PmST (disease tolerant strain). There were significant differences observed between in silico characterized structures of MrST and PmST proteins. Important functional differentially expressed genes (DEGs) in the aspects of stress, endocrine, immune, signalling, and structural were uncovered through comparative transcriptomic analysis. The DEGs associated with STAT functioning were identified including inositol 1,4,5-trisphosphate receptor, hsp90, caspase, ATP binding cassette transmembrane transporter, C-type Lectin, HMGB, ALF1, ALF3, superoxide dismutase, glutathione peroxidase, catalase, and TBK1. The main findings of this study are STAT differential gene expression patterns, sequence divergence, structural differences, and associated functional DEGs. These findings can be further utilized for shrimp health or host response diagnostic studies. STAT gene can also be proposed as a suitable candidate for future studies of shrimp innate immune enhancement.
  10. See LM, Hassan R, Tan SG, Bhassu S
    Genetika, 2011 Apr;47(4):566-9.
    PMID: 21675248
    Seven single locus microsatellite markers were characterized in Malaysian giant freshwater prawn, Macrobrachium rosenbergii from an enriched genomic library Primer pairs were designed to flank the repeat sequences and the loci characterized for this species. The bands resulting from the PCR amplifications of these eight microsatellite loci were polymorphic with the number of alleles ranging from 8 to 26 alleles per locus, whereas the observed heterozygosity ranged from 0.0641 to 0.6564. These newly developed microsatellite markers should prove to be useful for population studies and in the management of genetic variations in broodstocks of freshwater prawn, M. rosenbergii.
  11. Soo TCC, See SA, Bhassu S
    J Invertebr Pathol, 2020 11;177:107497.
    PMID: 33130047 DOI: 10.1016/j.jip.2020.107497
    Global shrimp aquaculture farmers have suffered major economic losses due to disease outbreaks. A notable shrimp disease is Acute Hepatopancreatic Necrosis Disease (AHPND), which is caused by a new strain of Vibrio parahaemolyticus bacteria (VpAHPND) that mainly inhabits the shrimp gut and damages the hepatopancreas. Fewer studies have investigated whether this disease will affect shrimp muscle functioning or cause any muscle damage. We challenged Penaeus monodon shrimp with VpAHPND bacteria using an immersion method. Expression of Dystrophin gene, an important regulatory gene for maintenance of muscle integrity, was quantified from muscle samples using qRT-PCR. Additional verification was conducted by determining calcium concentration and bta-miR-4286 and dre-miR-107b miRNAs expression. P. monodon dystrophin gene demonstrated the highest expression level during AHPND infection when muscle calcium concentration was detected at its lowest level at 6 h post-infection (hpi). The highest muscle calcium concentration, determined at 36 hpi, was supported by higher bta-miR-4286 miRNA expression and lower dre-miR-107b miRNA expression in VpAHPND-infected samples compared to uninfected samples at the same time point. We deduced an interactive relationship between dystrophin gene expression, calcium concentration, and miRNA expression in P. monodon muscle tissues triggered by the invading VpAHPND bacterium.
  12. Vythalingam LM, Hossain MAM, Bhassu S
    Mol Cell Probes, 2021 02;55:101683.
    PMID: 33259896 DOI: 10.1016/j.mcp.2020.101683
    Invasive alien fish species have become a silent treat towards the ecosystem especially the native fish population in Malaysia. There has been a need to develop rapid identification methods that can aid management teams in identifying fish species that are not native to our ecosystem. Current visual identification methods are highly tedious and require time, delaying action towards curbing the invasion. The LAMP assay successfully identified six popular invasive fish species in Malaysia. None of the LAMP assays showed false positives and the Limit of Detection of the LAMP primers were highly sensitive and could detect DNA samples up to 1 × 10-15 ng/μl. The LAMP primers designed were highly specific to the target species and did not amplify non target species. DNA sequencing was done to ensure the accuracy of LAMP assay results. This study demonstrates that LAMP is a suitable tool in species identification efforts of invasive fish species in Malaysia.
  13. Thergarajan G, Govind SK, Bhassu S
    Parasitol Res, 2018 Jan;117(1):177-187.
    PMID: 29188368 DOI: 10.1007/s00436-017-5688-3
    Blastocystis sp. is known to be the most commonly found intestinal protozoan parasite in human fecal surveys and has been incriminated to cause diarrhea and abdominal bloating. Binary fission has been widely accepted as the plausible mode of reproduction for this parasite. The present study demonstrates that subjecting the parasites in vitro to higher temperature shows the proliferation of parasite numbers in cultures. Transmission electron microscopy was used to compare the morphology of Blastocystis sp. subtype 3 isolated from a dengue patient having high fever (in vivo thermal stress) and Blastocystis sp. 3 maintained at 41 °C (in vitro thermal stress) and 37 °C (control). Fluorescence stains like acridine orange (AO) and 4',6'-diamino-2-phenylindole (DAPI) were used to demonstrate the viability and nuclear content of the parasite for both the in vitro and in vivo thermal stress groups of parasites. Blastocystis sp. at 37 °C was found to be mostly vacuolar whereas the in vitro thermal stressed isolates at 41 °C were granular with electron dense material seen to protect the granules within the central body. Parasites of the in vivo thermal stressed group showed similar ultrastructure as the in vitro ones. AO and DAPI staining provided evidence that these granules are viable which develop into progenies of Blastocystis sp. These granular forms were then observed to rupture and release progenies from the mother cells whilst the peripheral cytoplasmic walls were seen to degrade. Upon exposure to high temperature both in vitro and in vivo, Blastocystis sp. in cultures show higher number of granular forms seen to be protected by the electron dense material within the central body possibly acting as a protective mechanism. This is possibly to ensure the ability to survive for the granules to be developed as viable progenies for release into the host system.
  14. Song LM, Munian K, Abd Rashid Z, Bhassu S
    ScientificWorldJournal, 2013;2013:917506.
    PMID: 24396312 DOI: 10.1155/2013/917506
    Conservation is imperative for the Asian snakeheads Channa striata, as the species has been overfished due to its high market demand. Using maternal markers (mitochondrial cytochrome c oxidase subunit 1 gene (COI)), we discovered that evolutionary forces that drove population divergence did not show any match between the genetic and morphological divergence pattern. However, there is evidence of incomplete divergence patterns between the Borneo population and the populations from Peninsular Malaysia. This supports the claim of historical coalescence of C. striata during Pleistocene glaciations. Ecological heterogeneity caused high phenotypic variance and was not correlated with genetic variance among the populations. Spatial conservation assessments are required to manage different stock units. Results on DNA barcoding show no evidence of cryptic species in C. striata in Malaysia. The newly obtained sequences add to the database of freshwater fish DNA barcodes and in future will provide information relevant to identification of species.
  15. Avin FA, Bhassu S, Shin TY, Sabaratnam V
    Mol Biol Rep, 2012 Jul;39(7):7355-64.
    PMID: 22327649 DOI: 10.1007/s11033-012-1567-2
    Morphological identification of edible mushrooms can sometimes prove troublesome, because phenotypic variation in fungi can be affected by substrate and environmental factors. One of the most important problems for mushroom breeders is the lack of a systematic consensus tool to distinguish different species, which are sometimes morphologically identical. Basidiomycetes as one of the largest groups of edible mushrooms have become more important in recent times for their medicinal and nutritional properties. Partial rDNA sequences, including the Internal Transcribed Spacer I-5.8SrDNA-Internal Transcribed Spacer II, were used in this study for molecular identification and assessment of phylogenetic relationships between selected edible species of the Basidiomycetes. Phylogenetic trees showed five distinct clades; each clade belonging to a separate family group. The first clade included all the species belonging to the Pleurotaceae (Pleurotus spp.) family; similarly, the second, third, fourth, and fifth clades consist of species from the Agaricaceae (Agaricus sp.), Lyophllaceae (Hypsigygus sp.), Marasmiaceae (Lentinula edodes sp.) and Physalacriaceae (Flammulina velutipes sp.) families, respectively. Moreover, different species of each family were clearly placed in a distinct sub-cluster and a total of 13 species were taken for analysis. Species differentiation was re-confirmed by AMOVA analysis (among the populations: 99.67%; within: 0.33%), nucleotide divergence, haplotyping and P value. Polymorphism occurred throughout the ITS regions due to insertion-deletion and point mutations, and can be clearly differentiated within the families as well as genera. Moreover, this study proves that the sequence of the ITS region is a superior molecular DNA barcode for taxonomic identification of Basidiomycetes.
  16. Manoharan B, Sulaimen Z, Omar F, Othman RY, Mohamed SZ, Bhassu S
    Genet. Mol. Res., 2011;10(2):712-6.
    PMID: 21523650 DOI: 10.4238/vol10-2gmr944
    Malaysian arowana (dragonfish; Scleropages formosus) is an ancient osteoglossid fish from southeast Asia. Due to the high demand of the ornamental fish trade and because of habitat loss, the species is close to extinction. We isolated and characterized 10 polymorphic microsatellites of this species, using 5'-anchored PCR. The number of alleles at the 10 microsatellite loci ranged from 2 to 28, with a mean of 7.8/locus. The observed heterozygosity ranged from 0.03 to 0.93 (mean: 0.39), whereas the expected heterozygosity ranged from 0.03 to 0.94 (mean: 0.46). Seven microsatellites deviated from Hardy-Weinberg equilibrium, and three conformed to Hardy-Weinberg equilibrium and were in linkage equilibrium. These 10 novel microsatellites should facilitate studies of genetic diversity and population structure of arowana to help plan actions for the conservation of the indigenous Malaysian arowana.
  17. Hazreen Nita MK, Kua BC, Bhassu S, Othman RY
    Mol Biol Rep, 2012 Apr;39(4):3785-90.
    PMID: 21755294 DOI: 10.1007/s11033-011-1155-x
    Infectious hypodermal and haematopoietic necrosis virus (IHHNV) has been detected widely in penaeid culture facilities in Asia and the Americas. IHHNV infection on sub-adult and postlarvae of the giant freshwater prawn, Macrobrachium rosenbergii which had caused up to 80% mortalities was first reported in Southeast Taiwan in 2006. In Malaysia, although, there has been no report on IHHNV infections in M. rosenbergii, preliminary work suggests that there is an urgent need to setup a screening protocol for IHHNV for both wild and cultured populations. In this study, polymerase chain reaction based screening was carried out on 30 randomly sampled berried wild M. rosenbergii before and after spawning. All samples did not showed any sign of IHHNV infection. However, the results showed that 20% of the samples were IHHNV positive. Sequence analysis of the amplified band using NCBI-BLAST showed that the putative IHHNV sequence had 98% nucleotide sequence (388 bp) identity with the IHHNV isolate AC-05-005 non-structural protein 1 gene and seven other IHHNV strains in the data bank further affirming the suggestion on the presence of IHHNV in wild freshwater prawn populations in Malaysia.
  18. Bhassu S, See LM, Hassan R, Siraj SS, Tan SG
    Mol Ecol Resour, 2008 Sep;8(5):983-5.
    PMID: 21585948 DOI: 10.1111/j.1755-0998.2008.02127.x
    Eight single locus microsatellite markers were developed to characterize the Malaysian giant freshwater prawn, Macrobrachium rosenbergii. These microsatellites were isolated from an enriched genomic library contained by using a 5'-anchored polymerase chain reaction technique. Primers were designed to flank the repeat sequences and subsequently used to characterize 30 unrelated individuals of the giant freshwater prawn. The polymerase chain reaction amplification products of these eight microsatellite loci were polymorphic with the number of alleles ranging from two to 10 alleles per locus while the levels of heterozygosity ranged from 0.6333 to 0.8667.
  19. Alinejad T, Bin KQ, Vejayan J, Othman RY, Bhassu S
    Meta Gene, 2015 Sep;5:55-67.
    PMID: 26106581 DOI: 10.1016/j.mgene.2015.05.004
    Epizootic diseases cause huge mortality and economical loses at post larvae stages in freshwater prawn aquaculture industry. These prawns seem less susceptible to viral diseases except for infectious hypodermal and hematopoietic necrosis virus (IHHNV). During viral infection in prawns, hemocytes are the primary organ that shows immunological response within the early stages of infection. We applied proteomic approaches to understand differential expression of the proteins in hemocytes during the viral disease outbreak. To aid the goal, we collected Macrobrachium rosenbergii broodstocks from the local grow out hatchery which reported the first incidence of IHHNV viral outbreak during larvae stage. Primarily, application of the OIE primer targeting 389 bp fragments of IHHNV virus was used in identification of the infected and non-infected samples of the prawn breeding line. Analysis of two-dimensional gel electrophoresis showed specific down-regulation of Arginine kinase and Sarcoplasmic calcium-binding protein and up/down-regulation of Prophenoloxidase1 and hemocyanin isoforms. These proteins were validated using semi quantitative RT-PCR and gene transcripts at mRNA level. These identified proteins can be used as biomarkers, providing a powerful approach to better understanding of the immunity pathway of viral disease with applications in analytic and observational epidemiology diagnosis. Proteomic profiling allows deep insight into the pathogenesis of IHHNV molecular regulation and mechanism of hemocyte in freshwater prawns.
  20. Soo TCC, Devadas S, Mohamed Din MS, Bhassu S
    Gut Pathog, 2019;11:39.
    PMID: 31372182 DOI: 10.1186/s13099-019-0319-4
    Background: Penaeus monodon is the second most widely cultured marine shrimp species in the global shrimp aquaculture industry. However, the growth of P. monodon production has been constantly impaired by disease outbreaks. Recently, there is a lethal bacterial infection, known as acute hepatopancreatic necrosis disease (AHPND) caused by Vibrio parahaemolyticus AHPND strain (VpAHPND), which led to mass mortalities in P. monodon. Unfortunately, there is still insufficient knowledge about the underlying immune response of P. monodon upon AHPND infection. The present study aims to provide an insight into the antibacterial immune response elicited by P. monodon hepatopancreas towards AHPND infection.

    Methods: We have employed high-throughput RNA-Seq technology to uncover the transcriptome changes of P. monodon hepatopancreas when challenged with VpAHPND. The shrimps were challenged with VpAHPND through immersion method with dissected hepatopancreas samples for the control group (APm-CTL) and treatment group at 3 (APm-T3), 6 (APm-T6), and 24 (APm-T24) hours post-AHPND infection sent for RNA-Seq. The transcriptome de novo assembly and Unigene expression determination were conducted using Trinity, Tgicl, Bowtie2, and RSEM software. The differentially expressed transcripts were functionally annotated mainly through COG, GO, and KEGG databases.

    Results: The sequencing reads generated were filtered to obtain 312.77 Mb clean reads and assembled into 48662 Unigenes. Based on the DEGs pattern identified, it is inferred that the PAMPs carried by VpAHPND or associated toxins are capable of activating PRRs, which leads to subsequent pathway activation, transcriptional modification, and antibacterial responses (Phagocytosis, AMPs, proPO system). DAMPs are released in response to cell stress or damage to further activate the sequential immune responses. The comprehensive interactions between VpAHPND, chitin, GbpA, mucin, chitinase, and chitin deacetylase were postulated to be involved in bacterial colonization or antibacterial response.

    Conclusions: The outcomes of this research correlate the different stages of P. monodon immune response to different time points of AHPND infection. This finding supports the development of biomarkers for the detection of early stages of VpAHPND colonization in P. monodon through host immune expression changes. The potential genes to be utilized as biomarkers include but not limited to C-type lectin, HMGB1, IMD, ALF, serine proteinase, and DSCAM.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links