Displaying all 12 publications

Abstract:
Sort:
  1. Musri N, Christie B, Ichwan SJA, Cahyanto A
    Imaging Sci Dent, 2021 Sep;51(3):237-242.
    PMID: 34621650 DOI: 10.5624/isd.20210074
    Purpose: The aim of this study was to analyse and review deep learning convolutional neural networks for detecting and diagnosing early-stage dental caries on periapical radiographs.

    Materials and Methods: In order to conduct this review, the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed. Studies published from 2015 to 2021 under the keywords (deep convolutional neural network) AND (caries), (deep learning caries) AND (convolutional neural network) AND (caries) were systematically reviewed.

    Results: When dental caries is improperly diagnosed, the lesion may eventually invade the enamel, dentin, and pulp tissue, leading to loss of tooth function. Rapid and precise detection and diagnosis are vital for implementing appropriate prevention and treatment of dental caries. Radiography and intraoral images are considered to play a vital role in detecting dental caries; nevertheless, studies have shown that 20% of suspicious areas are mistakenly diagnosed as dental caries using this technique; hence, diagnosis via radiography alone without an objective assessment is inaccurate. Identifying caries with a deep convolutional neural network-based detector enables the operator to distinguish changes in the location and morphological features of dental caries lesions. Deep learning algorithms have broader and more profound layers and are continually being developed, remarkably enhancing their precision in detecting and segmenting objects.

    Conclusion: Clinical applications of deep learning convolutional neural networks in the dental field have shown significant accuracy in detecting and diagnosing dental caries, and these models hold promise in supporting dental practitioners to improve patient outcomes.

  2. Herliana H, Yusuf HY, Laviana A, Wandawa G, Cahyanto A
    Polymers (Basel), 2023 Jan 22;15(3).
    PMID: 36771876 DOI: 10.3390/polym15030575
    Chitosan and gelatin were the most widely used natural materials in pharmaceutical and medical fields, especially as local hemostatic agents, independently or as a composite material with the addition of other active substances. Chitosan and gelatin have excellent properties in biocompatibility, biodegradability, non-toxicity and water absorption capacity. The objective of this review was to analyze the characteristics of chitosan-gelatin (CG) composite-based biomaterial and its effectivity as a local hemostatic agent. We used PRISMA guidelines and the PICO framework to compile this review. The findings demonstrated that the CG composite-based biomaterial had excellent physical, chemical, mechanical properties and local hemostatic agent activity by adding other active substances such as oxidized fibers (OF), silica nanoparticles (SiNPs), calcium (Ca) and biphasic calcium phosphate (BCP) or by setting the CG composite proportion ratio.
  3. Christie B, Musri N, Djustiana N, Takarini V, Tuygunov N, Zakaria MN, et al.
    Mater Today Bio, 2023 Dec;23:100815.
    PMID: 37779917 DOI: 10.1016/j.mtbio.2023.100815
    Conventional dentistry faces limitations in preserving tooth health due to the finite lifespan of restorative materials. Regenerative dentistry, utilizing stem cells and bioactive materials, offers a promising approach for regenerating dental tissues. Human dental pulp stem cells (hDPSCs) and bioactive materials like calcium phosphate (CaP) and silicate-based materials have shown potential for dental tissue regeneration. This systematic review aims to investigate the effects of CaP and silicate-based materials on hDPSCs through in vitro studies published since 2015. Following the PRISMA guidelines, a comprehensive search strategy was implemented in PubMed MedLine, Cochrane, and ScienceDirect databases. Eligibility criteria were established using the PICOS scheme. Data extraction and risk of bias (RoB) assessment were conducted, with the included studies assessed for bias using the Office of Health and Translation (OHAT) RoB tool. The research has been registered at OSF Registries. Ten in vitro studies met the eligibility criteria out of 1088 initial studies. Methodological heterogeneity and the use of self-synthesized biomaterials with limited generalizability were observed in the included study. The findings highlight the positive effect of CaP and silicate-based materials on hDPSCs viability, adhesion, migration, proliferation, and differentiation. While the overall RoB assessment indicated satisfactory credibility of the reviewed studies, the limited number of studies and methodological heterogeneity pose challenges for quantitative research. In conclusion, this systematic review provides valuable insights into the effects of CaP and silicate-based materials on hDPSCs. Further research is awaited to enhance our understanding and optimize regenerative dental treatments using bioactive materials and hDPSCs, which promise to improve patient outcomes.
  4. Hartman H, Nurdin D, Akbar S, Cahyanto A, Setiawan AS
    Int J Paediatr Dent, 2024 Sep;34(5):639-652.
    PMID: 38297447 DOI: 10.1111/ipd.13164
    BACKGROUND: Artificial intelligence (AI) based on deep learning (DL) algorithms has shown promise in enhancing the speed and accuracy of dental anomaly detection in paediatric dentistry.

    AIM: This systematic review aimed to investigate the performance of AI systems in identifying dental anomalies in paediatric dentistry and compare it with human performance.

    DESIGN: A systematic search of Scopus, PubMed and Google Scholar was conducted from 2012 to 2022. Inclusion criteria were based on problem/patient/population, intervention/indicator, comparison and outcome scheme and specific keywords related to AI, DL, paediatric dentistry, dental anomalies, supernumerary and mesiodens. Six of 3918 initial pool articles were included, assessing nine DL sub-systems that used panoramic radiographs or cone-beam computed tomography. Article quality was assessed using QUADAS-2.

    RESULTS: Artificial intelligence systems based on DL algorithms showed promising potential in enhancing the speed and accuracy of dental anomaly detection, with an average of 85.38% accuracy and 86.61% sensitivity. Human performance, however, outperformed AI systems, achieving 95% accuracy and 99% sensitivity. Limitations included a limited number of articles and data heterogeneity.

    CONCLUSION: The potential of AI systems employing DL algorithms is highlighted in detecting dental anomalies in paediatric dentistry. Further research is needed to address limitations, explore additional anomalies and establish the broader applicability of AI in paediatric dentistry.

  5. Cahyanto A, Liemidia M, Karlina E, Zakaria MN, Shariff KA, Sukotjo C, et al.
    Materials (Basel), 2023 Mar 03;16(5).
    PMID: 36903186 DOI: 10.3390/ma16052071
    Carbonate apatite (CO3Ap) is a bioceramic material with excellent properties for bone and dentin regeneration. To enhance its mechanical strength and bioactivity, silica calcium phosphate composites (Si-CaP) and calcium hydroxide (Ca(OH)2) were added to CO3Ap cement. The aim of this study was to investigate the effect of Si-CaP and Ca(OH)2 on the mechanical properties in terms of the compressive strength and biological characteristics of CO3Ap cement, specifically the formation of an apatite layer and the exchange of Ca, P, and Si elements. Five groups were prepared by mixing CO3Ap powder consisting of dicalcium phosphate anhydrous and vaterite powder added by varying ratios of Si-CaP and Ca(OH)2 and 0.2 mol/L Na2HPO4 as a liquid. All groups underwent compressive strength testing, and the group with the highest strength was evaluated for bioactivity by soaking it in simulated body fluid (SBF) for one, seven, 14, and 21 days. The group that added 3% Si-CaP and 7% Ca(OH)2 had the highest compressive strength among the groups. SEM analysis revealed the formation of needle-like apatite crystals from the first day of SBF soaking, and EDS analysis indicated an increase in Ca, P, and Si elements. XRD and FTIR analyses confirmed the presence of apatite. This combination of additives improved the compressive strength and showed the good bioactivity performance of CO3Ap cement, making it a potential biomaterial for bone and dental engineering applications.
  6. Vitamia C, Iftinan GN, Latarissa IR, Wilar G, Cahyanto A, Elamin KM, et al.
    Drug Des Devel Ther, 2024;18:1297-1312.
    PMID: 38681204 DOI: 10.2147/DDDT.S449370
    Recurrent aphthous stomatitis (RAS) refers to a sore and frequently recurring inflammation of the oral tissues, distinguished by the presence of small ulcers that cause significant discomfort and cannot be attributed to any underlying disease. Different treatments have been used for RAS. This review aims to provide a comprehensive overview of the treatment options over the past decade for recurrent aphthous stomatitis (RAS), encompassing both natural and synthetic treatments. It will utilize clinical efficacy studies conducted in vivo and in vitro, along with a focus on the pharmaceutical approach through advancements in drug delivery development. We conducted a thorough literature search from 2013 to 2023 in prominent databases such as PubMed, Scopus, and Cochrane, utilizing appropriate keywords of recurrent aphthous stomatitis, and treatment. A total of 53 clinical trials with 3022 patients were included, with 35 using natural materials in their research and a total of 16 articles discussing RAS treatment using synthetic materials. All the clinical trials showed that natural and synthetic medicines seemed to benefit RAS patients by reducing pain score, ulcer size, and number of ulcers and shortening the healing duration.
  7. Sidiqa AN, Zakaria MN, Cahyanto A, Joni IM, Maskoen AM
    Heliyon, 2023 Jul;9(7):e18005.
    PMID: 37483813 DOI: 10.1016/j.heliyon.2023.e18005
    The carbonation of calcium hydroxide (Ca(OH)2) is affected by humidity and a saturated atmosphere. Ca(OH)2 from nature is easily carbonation and self-aggregates into calcium carbonate (CaCO3), resulting in larger particle size impairing the antimicrobial properties due to lack of penetration into the dentinal tubules and lower ion dissociation. To reduce the particle size, the wet beads milling process with distilled water as the medium is commonly used, but often results in great carbonation of the final product. Polyethylene Glycol (PEG) may inhibit the carbonation process as well as re-agglomeration. However, it requires intensive drying of the fine Ca(OH)2 particles. As an alternative, we used ethanol as a medium in the milling process, which is easily dried and compatible with PEG as a surfactant. This study aimed to evaluate PEG 400 as a dispersing agent in ethanol medium in the beads milling process to prevent carbonation of the fine Ca(OH)2 particles. The following groups were analysed CaP-PEG (Ca(OH)2-PEG) with ethanol as a medium, CaP-Eth (Ca(OH)2 with ethanol as a medium), CaP-DW (Ca(OH)2 with distilled water as a medium), CaPC (Ca(OH)2-carbonated) as the negative control and CaC (Ca(OH)2 analytical grade) as the positive control The final particle results were characterized to evaluate the crystal structure, functional groups, and particle size. The corresponding pH and antimicrobial activity against Enterococcus faecalis were assessed at 1, 3, 7, and 14 days. The penetration ability was evaluated by Scanning Electron Microscope. The data obtained were analysed by ANOVA with a significance level of 5%. PEG was able to inhibit carbonation and stabilize pH for up to 14 days, providing increased antimicrobial activity against E. faecalis. PEG also facilitates the ability of fine Ca(OH)2 particles to penetrate deeper into the dentine tubules by reducing particle size.
  8. Cahyanto A, Martins MVS, Bianchi O, Sudhakaran DP, Sililkas N, Echeverrigaray SG, et al.
    Dent Mater, 2023 Sep;39(9):763-769.
    PMID: 37400298 DOI: 10.1016/j.dental.2023.06.009
    OBJECTIVES: to characterize the effects of graphene oxide (GO) on polymethyl methacrylate's (PMMA) reliability and lifetime. The hypothesis tested was that GO would increase both Weibull parameters and decreased strength degradation over time.

    METHODS: PMMA disks containing GO (0.01, 0.05, 0.1, or 0.5 wt%) were subjected to a biaxial flexural test to determine the Weibull parameters (m: modulus of Weibull; σ0: characteristic strength; n = 30 at 1 MPa/s) and slow crack growth (SCG) parameters (n: subcritical crack growth susceptibility coefficient, σf0: scaling parameter; n = 10 at 10-2, 10-1, 101, 100 and 102 MPa/s). Strength-probability-time (SPT) diagrams were plotted by merging SCG and Weibull parameters.

    RESULTS: There was no significant difference in the m value of all materials. However, 0.5 GO presented the lowest σ0, whereas all other groups were similar. The lowest n value obtained for all GO-modified PMMA groups (27.4 for 0.05 GO) was higher than the Control (15.6). The strength degradation predicted after 15 years for Control was 12%, followed by 0.01 GO (7%), 0.05 GO (9%), 0.1 GO (5%), and 0.5 GO (1%).

    SIGNIFICANCE: The hypothesis was partially accepted as GO increased PMMA's fatigue resistance and lifetime but did not significantly improve its Weibull parameters. GO added to PMMA did not significantly affect the initial strength and reliability but significantly increased PMMA's predicted lifetime. All the GO-containing groups presented higher resistance to fracture at all times analyzed compared with the Control, with the best overall results observed for 0.1 GO.

  9. Tuygunov N, Zakaria MN, Yahya NA, Abdul Aziz A, Cahyanto A
    J Mech Behav Biomed Mater, 2023 Oct;146:106099.
    PMID: 37660446 DOI: 10.1016/j.jmbbm.2023.106099
    Bone regeneration is a rapidly growing field that seeks to develop new biomaterials to regenerate bone defects. Conventional bone graft materials have limitations, such as limited availability, complication, and rejection. Glass ionomer cement (GIC) is a biomaterial with the potential for bone regeneration due to its bone-contact biocompatibility, ease of use, and cost-effectiveness. GIC is a two-component material that adheres to the bone and releases ions that promote bone growth and mineralization. A systematic literature search was conducted using PubMed-MEDLINE, Scopus, and Web of Science databases and registered in the PROSPERO database to determine the evidence regarding the efficacy and bone-contact biocompatibility of GIC as bone cement. Out of 3715 initial results, thirteen studies were included in the qualitative synthesis. Two tools were employed in evaluating the Risk of Bias (RoB): the QUIN tool for assessing in vitro studies and SYRCLE for in vivo. The results indicate that GIC has demonstrated the ability to adhere to bone and promote bone growth. Establishing a chemical bond occurs at the interface between the GIC and the mineral phase of bone. This interaction allows the GIC to exhibit osteoconductive properties and promote the growth of bone tissue. GIC's bone-contact biocompatibility, ease of preparation, and cost-effectiveness make it a promising alternative to conventional bone grafts. However, further research is required to fully evaluate the potential application of GIC in bone regeneration. The findings hold implications for advancing material development in identifying the optimal composition and fabrication of GIC as a bone repair material.
  10. Tuygunov N, Khairunnisa Z, Yahya NA, Aziz AA, Zakaria MN, Israilova NA, et al.
    Dent Mater J, 2024 Jan 30;43(1):1-10.
    PMID: 38220163 DOI: 10.4012/dmj.2023-132
    This systematic review investigates the effectiveness of calcium and phosphate ions release on the bioactivity and remineralization potential of glass ionomer cement (GIC). Electronic databases, including PubMed-MEDLINE, Scopus, and Web of Science, were systematically searched according to PRISMA guidelines. This review was registered in the PROSPERO database. Five eligible studies on modifying GIC with calcium and phosphate ions were included. The risk of bias was assessed using the RoBDEMAT tool. The incorporation of these ions into GIC enhanced its bioactivity and remineralization properties. It promoted hydroxyapatite formation, which is crucial for remineralization, increased pH and inhibited cariogenic bacteria growth. This finding has implications for the development of more effective dental materials. This can contribute to improved oral health outcomes and the management of dental caries, addressing a prevalent and costly oral health issue. Nevertheless, comprehensive longitudinal investigations are needed to evaluate the clinical efficacy of this GIC's modification.
  11. Vitamia C, Iftinan GN, Latarissa IR, Wilar G, Cahyanto A, Mohammed AFA, et al.
    Front Pharmacol, 2024;15:1353503.
    PMID: 38434698 DOI: 10.3389/fphar.2024.1353503
    Background: Recurrent Aphthous Stomatitis (RAS) is a common ulcerative disease of the oral mucosa which is characterized by pain, and recurrent lesions in the oral cavity. This condition is quite painful, causing difficulty in eating, speaking and swallowing. Topical medications have been used for this condition, but the obstacle in using topical medications is the difficulty of achieving drug effects due to saliva wash out. This problem can be overcome by film hydrogel formulation which can protect the ulcer and reduce the pain to some extent. α-mangostin is a xanthone isolated from the rind of the mangosteen fruit. One of the activities of α-mangostin is anti-inflammatory effects, which operate through the characteristic mechanism of inhibiting the inflammatory response. This protocol study aims to investigate the efficacy of an α-mangostin hydrogel film with a chitosan alginate base for recurrent aphthous stomatitis (RAS) in comparison with a placebo over a period of 7 days. Study design: This is a two-arm, double blinding, randomized controlled trial enrolling patients with RAS. The efficacy test of α-mangostin Hydrogel Film will be tested against the placebo. Patients with RAS will be allocated randomly into the two arms and the hydrogel film will be administered for 7 days. The diameter of ulcer and visual analog scale (VAS) score will be used as the primary efficacy endpoint. The outcome measure will be compared between the two arms at the baseline, day 3, day 5, and at the end of 7 days. Discussion: The purpose of this clinical research is to provide scientific evidence on the efficacy of α-mangostin hydrogel film with a chitosan alginate basis in treating recurrent aphthous stomatitis. The trial is expected to improve our capacity to scientifically confirm the anti-inflammatory effectiveness of α-mangostin compounds in a final formulation that is ready to use. Trial registration: NCT06039774 (14 September 2023).
  12. Cahyanto A, Rath P, Teo TX, Tong SS, Malhotra R, Cavalcanti BN, et al.
    J Dent Res, 2023 Dec;102(13):1425-1433.
    PMID: 37861249 DOI: 10.1177/00220345231198185
    Calcium silicate (C3S) cements are available in kits that do not account for patients' specific needs or clinicians' preferences regarding setting time, radiopacity, mechanical, and handling properties. Moreover, slight variations in powder components and liquid content affect cement's properties and bioactivity. Unfortunately, it is virtually impossible to optimize several cement properties simultaneously via the traditional "one variable at a time" strategy, as inputs often induce trade-offs in properties (e.g., a higher water-to-powder ratio [W/P] increases flowability but decreases mechanical properties). Herein, we used Taguchi's methods and genetic algorithms (GAs) to simultaneously analyze the effect of multiple inputs (e.g., powder composition, radiopacifier concentration, and W/P) on setting time, pH, flowability, diametral tensile strength, and radiopacity, as well as prescribe recipes to produce cements with predicted properties. The properties of cements designed with GAs were experimentally tested, and the results matched the predictions. Finally, we show that the cements increased the genetic expression of odonto/osteogenic genes, alkaline phosphatase activity, and mineralization potential of dental pulp stem cells. Hence, GAs can produce cements with tailor-made properties and differentiation potential for personalized endodontic treatment.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links