Displaying all 17 publications

Abstract:
Sort:
  1. Lim SC, Chan EWL, Tang SP
    Lupus, 2020 Aug;29(9):1106-1114.
    PMID: 32631203 DOI: 10.1177/0961203320939185
    BACKGROUND: Paediatric systemic lupus erythematosus is a rare autoimmune disease with a wide spectrum of clinical presentation in different populations. We present a cohort of paediatric systemic lupus erythematosus in Malaysia where the disease features and outcomes are still largely unknown.

    METHODS: A retrospective review of all paediatric systemic lupus erythematosus patients with at least 6 months follow-up at Selayang Hospital from 2004 to 2016. Epidemiological, clinical and outcome data were collected and analysed.

    RESULTS: A total of 141 paediatric systemic lupus erythematosus patients, 87.9% females, were followed up for a median 6.3 years (interquartile range 3.6-9.0). The median age at diagnosis was 10.8 years (interquartile range 9.0-12.0 years), positive family history of systemic lupus erythematosus was present in 12.1% and the majority (61.7%) were of Malay ethnicity. Common presentations included fever (87.2%), vasculitic rash (72.3%) and lethargy (69.5%). At diagnosis, leukopenia (51.1%), thrombocytopenia (41.8%) and cutaneous lupus (56%) predominate with significant renal involvement (39.7%). Renal (45.4%), liver (26%) and the central nervous system (17%) were important major organs involved during the course of the disease. At diagnosis, almost all (99.3%) patients had high disease activity (mean Systemic Lupus Erythematosus Disease Activity Index score 20.1 ± 9.6). The majority (62.4%) achieved remission or low disease activity after 6 months, maintained over the next 10 years. Damage occurred early (39.1% at 1 year) and increased with time. Ocular damage was the most common side effect (29%) and was predominantly corticosteroid related (93%). Growth retardation was significant (38.2%) with no gonadal failure or secondary malignancies. End-stage renal disease occurred in 3.1% patients whereas 53.1% had sustained renal remission. Overall mortality was 1.4%.

    CONCLUSION: Despite high disease activity at diagnosis, the majority had good sustained response to treatment with low overall mortality. However, there was progressive accrual of organ damage, highlighting the need for further research and refinements into therapies for paediatric systemic lupus erythematosus.

  2. Yap JKY, Pickard BS, Gan SY, Chan EWL
    Int J Biochem Cell Biol, 2021 07;136:106014.
    PMID: 34022435 DOI: 10.1016/j.biocel.2021.106014
    Alzheimer's disease is an irreversible neurodegenerative disease, which accounts for most dementia cases. Neuroinflammation is increasingly recognised for its roles in Alzheimer's disease pathogenesis which, in part, links amyloid-beta to neuronal death. Neuroinflammatory signalling can be exhibited by neurons themselves, potentially leading to widespread neuronal cell death, although neuroinflammation is commonly associated with glial cells. The presence of the inflammasomes such as nucleotide-binding leucine-rich repeat receptors protein 1 in neurons accelerates amyloid-beta -induced neuroinflammation and has been shown to trigger neuronal pyroptosis in murine Alzheimer's disease models. However, the pathways involved in amyloid-beta activation of inflammasomes have yet to be elucidated. In this study, a gene trap mutagenesis approach was utilised to resolve the genes functionally involved in inflammasome signalling within neurons, and the mechanism behind amyloid-beta-induced neuronal death. The results indicate that amyloid-beta significantly accelerated neuroinflammatory cell death in the presence of a primed inflammasome (the NLR family pyrin domain-containing 1). The mutagenesis screen discovered the atypical mitochondrial Ras homolog family member T1 as a significant contributor to amyloid-beta-induced inflammasome -mediated neuronal death. The mutagenesis screen also identified two genes involved in transforming growth factor beta signalling, namely Transforming Growth Factor Beta Receptor 1 and SNW domain containing 1. Additionally, a gene associated with cytoskeletal reorganisation, SLIT-ROBO Rho GTPase Activating Protein 3 was found to be neuroprotective. In conclusion, these genes could play important roles in inflammasome signalling in neurons, which makes them promising therapeutic targets for future drug development against neuroinflammation in Alzheimer's disease.
  3. Elhassan SAM, Candasamy M, Chan EWL, Bhattamisra SK
    Diabetes Metab Syndr, 2018 Nov;12(6):1109-1116.
    PMID: 29843994 DOI: 10.1016/j.dsx.2018.05.020
    BACKGROUND: Autophagy is a process devoted to degrade and recycle cellular components inside mammalian cells through lysosomal system. It plays a main function in the pathophysiology of several diseases. In type 2 diabetes, works demonstrated the dual functions of autophagy in diabetes biology. Studies had approved the role of autophagy in promoting different routes for movement of integral membrane proteins to the plasma membrane. But its role in regulation of GLUT4 trafficking has not been widely observed. In normal conditions, insulin promotes GLUT4 translocation from intracellular membrane compartments to the plasma membrane, while in type 2 diabetes defects occur in this translocation.

    METHOD: Intriguing evidences discussed the contribution of different intracellular compartments in autophagy membrane formation. Furthermore, autophagy serves to mobilise membranes within cells, thereby promoting cytoplasmic components reorganisation. The intent of this review is to focus on the possibility of autophagy to act as a carrier for GLUT4 through regulating GLUT4 endocytosis, intracellular trafficking in different compartments, and translocation to cell membrane.

    RESULTS: The common themes of autophagy and GLUT4 have been highlighted. The review discussed the overlapping of endocytosis mechanism and intracellular compartments, and has shown that autophagy and GLUT4 utilise similar proteins (SNAREs) which are used for exocytosis. On top of that, PI3K and AMPK also control both autophagy and GLUT4.

    CONCLUSION: The control of GLUT4 trafficking through autophagy could be a promising field for treating type 2 diabetes.

  4. Chan EWL, Yee ZY, Raja I, Yap JKY
    J Glob Antimicrob Resist, 2017 09;10:70-74.
    PMID: 28673701 DOI: 10.1016/j.jgar.2017.03.012
    OBJECTIVES: Currently, only a few antibiotics are available to treat methicillin-resistant Staphylococcus aureus (MRSA). One alternative approach includes adjuvants to antibiotic therapy. Non-steroidal anti-inflammatory drugs (NSAIDs) are non-antibiotic drugs reported to exhibit antibacterial activity. The objective of this study was to investigate the interaction between NSAIDs with selected antibiotics (cefuroxime and chloramphenicol) against strains of S. aureus.

    METHODS: The antibacterial activity of four NSAIDs (aspirin, ibuprofen, diclofenac and mefenamic acid) were tested against ten pathogenic bacterial strains using the microdilution broth method. The interaction between NSAIDs and antibiotics (cefuroxime/chloramphenicol) was estimated by calculating the fractional inhibitory concentration (FICI) of the combination.

    RESULTS: Aspirin, ibuprofen and diclofenac exhibited antibacterial activity against the selected pathogenic bacteria. The interaction between ibuprofen/aspirin with cefuroxime was demonstrated to be synergistic against methicillin-sensitive S. aureus (MSSA) and the MRSA reference strain, whereas for MRSA clinical strains additive effects were observed for both NSAIDs and cefuroxime combinations. The combination of chloramphenicol with ibuprofen/aspirin was synergistic against all of the tested MRSA strains and displayed an additive effect against MSSA. A 4-8192-fold reduction in the cefuroxime minimum inhibitory concentration (MIC) and a 4-64-fold reduction of the chloramphenicol MIC were documented.

    CONCLUSIONS: Overall, the NSAIDs ibuprofen and aspirin showed antibacterial activity against strains of S. aureus. Although individually less potent than common antibiotics, these NSAIDs are synergistic in action with cefuroxime and chloramphenicol and could potentially be used as adjuvants in combating multidrug-resistant MRSA.

  5. Chan EWL, Krishnansamy S, Wong C, Gan SY
    Neurotoxicology, 2019 01;70:91-98.
    PMID: 30408495 DOI: 10.1016/j.neuro.2018.11.001
    The cognitive impairment caused by Alzheimer's disease (AD) is associated with beta-amyloid (Aβ) and tau proteins, and is accompanied by inflammation. Recently, a novel inflammasome signaling pathway has been uncovered. Inflammasomes are implicated in the execution of inflammatory responses and pyroptotic death leading to neurodegeneration. Thus, the inflammasome signaling pathway could be a potential therapeutic target for AD. Neural stem cells (NSCs) are multipotent cells that can self-renew and differentiate into distinct neural cells. NSC therapy has been considered to be a promising therapeutic approach in protecting the central nervous system and restoring it following damage. However, the mechanisms involved remain unclear. The aims of this study were to investigate the protective effects of NE4C neural stem cells against microglia-mediated neurotoxicity and to explore molecular mechanisms mediating their actions. NE4C decreased the levels of caspase-1 and IL-1β, and attenuated the level of the NLRP3 inflammasome and its associated protein adapter, apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain (ASC) in LPS-stimulated BV2 microglial cells, possibly by regulating the phosphorylation of p38α MAPK. The conditioned media obtained from co-culture of LPS-stimulated BV2 and NE4C cells exhibited protective effects on SH-SY5Y cells against microglia-mediated neurotoxicity; this was associated with an attenuation of tau phosphorylation and amyloidogenesis and accompanied by down-regulation of GSK-3β and p38α MAPK signalling pathways. In conclusion, the present study suggested that NSC therapy could be a potential strategy against microglia-mediated neurotoxicity. NSCs regulate NLRP3 activation and IL-1β secretion, which are critical in the initiation of the inflammatory responses, hence preventing the release of neurotoxic pro-inflammatory factors by microglia. This eventually reduces tau hyperphosphylation and amyloidogenesis, possibly through the regulation of GSK-3β and p38α MAPK signalling pathways, and thus protects SH-SY5Y cells against microglia-mediated neurotoxicity.
  6. Yap JKY, Pickard BS, Chan EWL, Gan SY
    Mol Neurobiol, 2019 Nov;56(11):7741-7753.
    PMID: 31111399 DOI: 10.1007/s12035-019-1638-7
    The innate immune system and inflammatory response in the brain have critical impacts on the pathogenesis of many neurodegenerative diseases including Alzheimer's disease (AD). In the central nervous system (CNS), the innate immune response is primarily mediated by microglia. However, non-glial cells such as neurons could also partake in inflammatory response independently through inflammasome signalling. The NLR family pyrin domain-containing 1 (NLRP1) inflammasome in the CNS is primarily expressed by pyramidal neurons and oligodendrocytes. NLRP1 is activated in response to amyloid-β (Aβ) aggregates, and its activation subsequently cleaves caspase-1 into its active subunits. The activated caspase-1 proteolytically processes interleukin-1β (IL-1β) and interleukin-18 (IL-18) into maturation whilst co-ordinately triggers caspase-6 which is responsible for apoptosis and axonal degeneration. In addition, caspase-1 activation induces pyroptosis, an inflammatory form of programmed cell death. Studies in murine AD models indicate that the Nlrp1 inflammasome is indeed upregulated in AD and neuronal death is observed leading to cognitive decline. However, the mechanism of NLRP1 inflammasome activation in AD is particularly elusive, given its structural and functional complexities. In this review, we examine the implications of the human NLRP1 inflammasome and its signalling pathways in driving neuroinflammation in AD.
  7. Chan EWL, Yap PS, Fazli Khalaf Z
    Geriatr Nurs, 2019 02 11;40(4):380-385.
    PMID: 30765175 DOI: 10.1016/j.gerinurse.2018.12.009
    A cross-sectional study design involving a total of 230 participants, recruited through Alzheimer's Disease Foundation Malaysia (ADFM), was adopted to access and correlate caregiver strain index (CSI) and resilience (RES) levels of the AD caregivers with various patients' and caregivers' factors. Findings revealed that 77.7% of caregivers had a high level of stress, and there was a significant negative correlation between RES and CSI (P 
  8. Chan EWL, Yeo ETY, Wong KWL, See ML, Wong KY, Gan SY
    Curr Alzheimer Res, 2019;16(3):251-260.
    PMID: 30819080 DOI: 10.2174/1567205016666190228124630
    BACKGROUND: Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder that eventually leads to severe cognitive impairment. Although the exact etiologies of AD still remain elusive, increasing evidence suggests that neuroinflammation cascades mediated by microglial cells are associated with AD. Piper sarmentosum Roxb. (PS) is a medicinal plant reported to possess various biological properties, including anti-inflammatory, anti-psychotic and anti-oxidant activity. However, little is known about the anti-inflammatory activity of PS roots despite their traditional use to treat inflammatory- mediated ailments.

    OBJECTIVE: This study aimed to evaluate the anti-inflammatory and neuroprotective properties of extracts obtained from the roots of PS against beta-amyloid (Aβ)-induced microglial toxicity associated with the production of pro-inflammatory mediators.

    METHOD: BV2 microglial cells were treated with hexane (RHXN), dichloromethane (RDCM), ethyl acetate (REA) and methanol (RMEOH) extracts of the roots of PS prior to activation by Aβ. The production and mRNA expression of pro-inflammatory mediators were evaluated by Griess reagent, ELISA kits and RT-qPCR respectively. The phosphorylation status of p38α MAPK was determined via western blot assay. BV2 conditioned medium was used to treat SH-SY5Y neuroblastoma cells and the neuroprotective effect was assessed using MTT assay.

    RESULTS: PS root extracts, in particular RMEOH significantly attenuated the production and mRNA expression of IL-1β, IL-6 and TNF-α in Aβ-induced BV2 microglial cells. In addition, RHXN, REA and RMEOH extracts significantly reduced nitric oxide (NO) level and the inhibition of NO production was correlated with the total phenolic content of the extracts. Further mechanistic studies suggested that PS root extracts attenuated the production of cytokines by regulating the phosphorylation of p38α MAPK in microglia. Importantly, PS root extracts have protective effects against Aβ-induced indirect neurotoxicity either by inhibiting the production of NO, IL-1β, IL-6, and TNF-α in BV2 cells or by protecting SHSY5Y cells against these inflammatory mediators.

    CONCLUSIONS: These findings provided evidence that PS root extracts confer neuroprotection against Aβ- induced microglial toxicity associated with the production of pro-inflammatory mediators and may be a potential therapeutic agent for inflammation-related neurological conditions including Alzheimer's disease (AD).

  9. Yaw ACK, Chan EWL, Yap JKY, Mai CW
    J Cancer Res Clin Oncol, 2020 Sep;146(9):2219-2229.
    PMID: 32507974 DOI: 10.1007/s00432-020-03274-y
    PURPOSE: Pancreatic cancer is a lethal form of cancer that can be triggered by prolonged or acute inflammation of the pancreas. Inflammation have been shown to be regulated by a group of key protein molecules known as the inflammasomes. The NLRP3 inflammasome is the most studied inflammasome and have been strongly implicated to regulate cancer cell proliferation. Therefore, this study aimed to examine the regulation of NLRP3 inflammasome under LPS-induced inflammation and its role in modulating cell proliferation in a panel of pancreatic cancer cells.

    METHODS: The effects of LPS-induced NLRP3 activation in the presence or absence of MCC950, NLRP3-specific inhibitor, was tested on a panel of three pancreatic cancer cell lines (SW1990, PANC1 and Panc10.05). Western blotting, cell viability kits and ELISA kits were used to examine the effects of LPS-induced NLRP3 activation and inhibition by MCC950 on NLRP3 expression, cell viability, caspase-1 activity and cytokine IL-1β, respectively.

    RESULTS: LPS-induced inflammation in the presence of ATP activates NLRP3 that subsequently increases pancreatic cancer cell proliferation by increasing caspase-1 activity leading to overall production of IL-1β. The inhibition of the NLRP3 inflammasome activation via the specific NLRP3 antagonist MCC950 was able to reduce the cell viability of pancreatic cancer cells. However, the efficacy of MCC950 varies between cell types which is most probably due to the difference in ASC expressions which have a different role in inflammasome activation.

    CONCLUSION: There is a dynamic interaction between inflammasome that regulates inflammasome-mediated inflammation in pancreatic adenocarcinoma cells.

  10. Yap JKY, Tan SYY, Tang SQ, Thien VK, Chan EWL
    Microb Drug Resist, 2021 Feb;27(2):234-240.
    PMID: 32589487 DOI: 10.1089/mdr.2020.0178
    Aims: Currently, limited antibiotics are available to treat methicillin-resistant Staphylococcus aureus (MRSA) infections. One approach is the use of adjuvants in antibiotic therapy. 1,4-Naphthoquinones are naturally occurring alkaloids shown to have antibacterial properties. The objective of this study is to investigate the synergy between 1,4-naphthoquinone and selected β-lactam antibiotics and to evaluate the potential use of 1,4-naphthoquinone as an adjuvant in antibiotic treatment against MRSA infections. Methods: The antibacterial activity of 1,4-naphthoquinone and plumbagin was tested against nine pathogenic bacterial strains using the microdilution broth method. The interactions between 1,4-naphthoquinone and three antibiotics (cefuroxime, cefotaxime, and imipenem) were estimated by calculating the fractional inhibitory concentration of the combination. Results: The compounds 1,4-naphthoquinone and plumbagin exhibited a broad range of bacteriostatic and bactericidal effects against both Gram-positive and Gram-negative bacteria. The interaction between 1,4-naphthoquinone and imipenem, cefuroxime, and cefotaxime was synergistic against methicillin-sensitive Staphylococcus aureus and MRSA clinical strains. Against ATCC-cultured MRSA, a synergistic effect was observed between 1,4-naphthoquinone and cefotaxime. However, combination with imipenem only produced an additive effect, and an antagonistic action was observed between 1,4-naphthoquinone and cefuroxime. Conclusions: Although individually less potent than common antibiotics, 1,4-naphthoquinone acts synergistically with imipenem, cefuroxime, and cefotaxime against MRSA clinical strains and could potentially be used in adjuvant-antibiotic therapy against multidrug resistant bacteria.
  11. Chan EWL, Chin MY, Low YH, Tan HY, Ooi YS, Chong CW
    Microb Drug Resist, 2021 Aug;27(8):1018-1028.
    PMID: 33325795 DOI: 10.1089/mdr.2020.0311
    Aims: The fluid of Nepenthes gracilis harbors diverse bacterial taxa that could serve as a gene pool for the discovery of the new genre of antimicrobial agents against multidrug-resistant Klebsiella pneumoniae. The aim of this study was to explore the presence of antibacterial genes in the fluids of N. gracilis growing in the wild. Methods: Using functional metagenomic approach, fosmid clones were isolated and screened for antibacterial activity against three strains of K. pneumoniae. A clone that exhibited the most potent antibacterial activity was sent for sequencing to identify the genes responsible for the observed activity. The secondary metabolites secreted by the selected clone was sequentially extracted using hexane, chloroform, and ethyl acetate. The chemical profiles of a clone (C6) hexane extract were determined by gas chromatography/mass spectrometry (GC-MS). Results: Fosmid clone C6 from the fluid of pitcher plant that exhibited antibacterial activity against three strains of K. pneumoniae was isolated using functional metagenome approach. A majority of the open reading frames detected from C6 were affiliated with the largely understudied Acidocella genus. Among them, the gene that encodes for coproporphyrinogen III oxidase in the heme biosynthesis pathway could be involved in the observed antibacterial activity. Based on the GC-MS analysis, the identities of the putative bioactive compounds were 2,5-di-tert-butylphenol and 1-ethyl-2-methyl cyclododecane. Conclusions: The gene that encodes for coproporphyrinogen III oxidase in the heme biosynthesis pathway as well as the secondary metabolites, namely 2,5-di-tert-butylphenol and 1-ethyl-2-methyl cyclododecane could be the potential antibacterial molecules responsible for the antibacterial activity of C6.
  12. Mavinkurve M, Jalaludin MY, Chan EWL, Noordin M, Samingan N, Leong A, et al.
    PMID: 33763028 DOI: 10.3389/fendo.2021.606018
    Background: Children with Type 1 diabetes (T1DM) commonly present in diabetic ketoacidosis (DKA) at initial diagnosis. This is likely due to several factors, one of which includes the propensity for T1DM to be misdiagnosed. The prevalence of misdiagnosis has been reported in non-Asian children with T1DM but not in Asian cohorts.

    Aim: To report the rate of misdiagnosis and its associated risk factors in Malaysian children and adolescents with T1DM.

    Methods: A retrospective analysis of children with T1DM below 18 years of age over a 10 year period was conducted.

    Results: The cohort included 119 children (53.8% female) with a mean age 8.1 SD ± 3.9 years. 38.7% of cases were misdiagnosed, of which respiratory illnesses were the most common (37.0%) misdiagnosis. The rate of misdiagnosis remained the same over the 10 year period. Among the variables examined, younger age at presentation, DKA at presentation, healthcare professional (HCP) contact and admission to the intensive care unit were significantly different between the misdiagnosed and correctly diagnosed groups (p <0.05).

    Conclusion: Misdiagnosis of T1DM occurs more frequently in Malaysian children <5 years of age. Misdiagnosed cases are at a higher risk of presenting in DKA with increased risk of ICU admission and more likely to have had prior HCP contact. Awareness of T1DM amongst healthcare professionals is crucial for early identification, prevention of DKA and reducing rates of misdiagnosis.

  13. Yeo ETY, Wong KWL, See ML, Wong KY, Gan SY, Chan EWL
    J Ethnopharmacol, 2018 May 10;217:187-194.
    PMID: 29462698 DOI: 10.1016/j.jep.2018.02.025
    ETHNOPHARMACOLOGICAL RELEVANCE: Piper sarmentosum Roxb. (PS), belonging to Piperaceae family, is an edible plant with medicinal properties. It is traditionally used by the Malays to treat headache and boost memory. Pharmacological studies revealed that PS exhibits anti-inflammatory, anti-oxidant, anti-acetylcholinesterase, and anti-depressant-like effects. In view of this, the present study aimed to investigate the anti-inflammatory actions of PS and its potential neuroprotective effects against beta-amyloid (Aβ)-induced microglia-mediated neurotoxicity.

    MATERIALS AND METHODS: The inhibitory effects of hexane (LHXN), dichloromethane (LDCM), ethyl acetate (LEA) and methanol (LMEOH) extracts from leaves of PS on Aβ-induced production and mRNA expression of pro-inflammatory mediators in BV-2 microglial cells were assessed using colorimetric assay with Griess reagent, ELISA kit and real-time RT-PCR respectively. Subsequently, MTT reduction assay was used to evaluate the neuroprotective effects of PS leaf extracts against Aβ-induced microglia-mediated neurotoxicity in SH-SY5Y neuroblastoma cells. The levels of tau proteins phosphorylated at threonine 231 (pT231) and total tau proteins (T-tau) were determined using ELISA kits.

    RESULTS: Polar extracts of PS leaves (LEA and LMEOH) reduced the Aβ-induced secretion of pro-inflammatory cytokines (IL-1β and TNF-α) in BV-2 cells by downregulating the mRNA expressions of pro-inflammatory cytokines. The inhibition of nitric oxide (NO) production could be due to the free radical scavenging activity of the extracts. In addition, conditioned media from Aβ-induced BV-2 cells pre-treated with LEA and LMEOH protected SH-SY5Y cells against microglia-mediated neurotoxicity. Further mechanistic study suggested that the neuroprotective effects were associated with the downregulation of phosphorylated tau proteins.

    CONCLUSIONS: The present study suggests that polar extracts of PS leaves confer neuroprotection against Aβ-induced microglia-mediated neurotoxicity in SH-SY5Y cells by attenuating tau hyperphosphorylation through their anti-inflammatory actions and could be a potential therapeutic agent for Alzheimer's disease.

  14. Sivam HGP, Chin BY, Gan SY, Ng JH, Gwenhure A, Chan EWL
    Cancer Biol Ther, 2023 Dec 31;24(1):2284857.
    PMID: 38018872 DOI: 10.1080/15384047.2023.2284857
    Modified macrophages, tumor-associated macrophages (TAMs), are key contributors to the survival, growth, and metastatic behavior of pancreatic ductal adenocarcinoma (PDAC) cells. Central to the role of inflammation and TAMs lies the NLRP3 inflammasome. This study investigated the effects of LPS-stimulated inflammation on cell proliferation, levels of pro-inflammatory cytokines, and the NLRP3 inflammasome pathway in a co-culture model using PDAC cells and macrophages in the presence or absence of MCC950, a NLRP3-specific inhibitor. The effects of LPS-stimulated inflammation were tested on two PDAC cell lines (Panc 10.05 and SW 1990) co-cultured with RAW 264.7 macrophages. Cell proliferation was determined using the MTT assay. Levels of pro-inflammatory cytokines, IL-1β, and TNF-α were determined by ELISA. Western blot analyses were used to examine the expression of NLRP3 in both PDAC cells and macrophages. The co-culture and interaction between PDAC cell lines and macrophages led to pro-inflammatory microenvironment under LPS stimulation as evidenced by high levels of secreted IL-1β and TNF-α. Inhibition of the NLRP3 inflammasome by MCC950 counteracted the effects of LPS stimulation on the regulation of the NLRP3 inflammasome and pro-inflammatory cytokines in PDAC and macrophages. However, MCC950 differentially modified the viability of the metastatic vs primary PDAC cell lines. LPS stimulation increased PDAC cell viability by regulating the NLRP3 inflammasome and pro-inflammatory cytokines in the tumor microenvironment of PDAC cells/macrophages co-cultures. The specific inhibition of the NLRP inflammasome by MCC950 effectively counteracted the LPS-stimulated inflammation.
  15. Chan EWL, Yeo ETY, Wong KWL, See ML, Wong KY, Yap JKY, et al.
    Curr Alzheimer Res, 2021;18(1):80-87.
    PMID: 33761853 DOI: 10.2174/1567205018666210324124239
    BACKGROUND: In Alzheimer's disease, accumulation of beta amyloid (Aβ) triggers amyloidogenesis and hyperphosphorylation of tau protein leading to neuronal cell death. Piper sarmentosum Roxb. (PS) is a traditional medicinal herb used by Malay to treat rheumatism, headache and boost memory. It possesses various biological effects, such as anti-cholinergic, anti-inflammatory, anti-oxidant and anti-depressant-like effects.

    OBJECTIVE: The present study aimed to investigate neuroprotective properties of PS against Aβ-induced neurotoxicity and to evaluate its potential mechanism of action.

    METHODS: Neuroprotective effects of hexane (HXN), dichloromethane (DCM), ethyl acetate (EA) and methanol (MEOH) extracts from leaves (L) and roots (R) of PS against Aβ-induced neurotoxicity were investigated in SH-SY5Y human neuroblastoma cells. Cells were pre-treated with PS for 24 h followed by 24 h of induction with Aβ. The neuroprotective effects of PS were studied using cell viability and cellular reactive oxygen species (ROS) assays. The levels of extracellular Aβ and tau proteins phosphorylated at threonine 231 (pT231) were determined. Gene and protein expressions were assessed using qRT-PCR analyses and western blot analyses, respectively.

    RESULTS: Hexane extracts of PS (LHXN and RHXN) protected SH-SY5Y cells against Aβ-induced neurotoxicity, and decreased levels of extracellular Aβ and phosphorylated tau (pT231). Although extracts of PS inhibited Aβ-induced ROS production, it was unlikely that neuroprotective effects were simply due to the anti-oxidant capacity of PS. Further, mechanistic study suggested that the neuroprotective effects of PS might be due to its capability to regulate amyloidogenesis through the downregulation of BACE and APP.

    CONCLUSION: These findings suggest that hexane extracts of PS confer neuroprotection against Aβ- induced neurotoxicity in SH-SY5Y cells by attenuating amyloidogenesis and tau hyperphosphorylation. Due to its neuroprotective properties, PS might be a potential therapeutic agent for Alzheimer's disease.

  16. Lee ECS, Elhassan SAM, Lim GPL, Kok WH, Tan SW, Leong EN, et al.
    Biomed Pharmacother, 2019 Mar;111:198-208.
    PMID: 30583227 DOI: 10.1016/j.biopha.2018.12.052
    For many years, circular ribonucleic acids (circRNAs) have been counted as aberrant splicing by-products. Advanced bioinformatics analysis and deep sequencing techniques have allowed researchers to discover more interesting facts about circRNAs. Intriguing evidence has shed light on the functions of circRNAs in many tissues. Furthermore, emerging reports showed that circRNAs are found abundantly in saliva and blood samples, suggesting that circRNAs are potential clinical biomarkers for human embryonic development, diseases progression and prognosis, in addition to its role in organogenesis and pathogenesis. The implementation of circRNAs in human developmental stages and diseases would be a tremendous discovery in the science and medical field. Therefore, circRNAs have been studied for its biological function as well as its implication in various human diseases. The aim of this review is to highlight the importance of circRNAs in cardiac, respiratory, nervous, endocrine and digestive systems. In addition, the role and impact of circRNAs in, cardiogenesis, neurogenesis and cancer have been discussed.
  17. Voon K, Johari NA, Lim KL, Wong ST, Khaw LT, Wong SF, et al.
    Bio Protoc, 2021 May 05;11(9):e4005.
    PMID: 34124305 DOI: 10.21769/BioProtoc.4005
    The COVID-19 pandemic requires mass screening to identify those infected for isolation and quarantine. Individually screening large populations for the novel pathogen, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), is costly and requires a lot of resources. Sample pooling methods improve the efficiency of mass screening and consume less reagents by increasing the capacity of testing and reducing the number of experiments performed, and are therefore especially suitable for under-developed countries with limited resources. Here, we propose a simple, reliable pooling strategy for COVID-19 testing using clinical nasopharyngeal (NP) and/or oropharyngeal (OP) swabs. The strategy includes the pooling of 10 NP/OP swabs for extraction and subsequent testing via quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR), and may also be applied to the screening of other pathogens.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links