Displaying all 6 publications

Abstract:
Sort:
  1. Bui DT, Panahi M, Shahabi H, Singh VP, Shirzadi A, Chapi K, et al.
    Sci Rep, 2021 Jul 20;11(1):15152.
    PMID: 34285263 DOI: 10.1038/s41598-021-93957-4
  2. Bui DT, Panahi M, Shahabi H, Singh VP, Shirzadi A, Chapi K, et al.
    Sci Rep, 2018 Oct 18;8(1):15364.
    PMID: 30337603 DOI: 10.1038/s41598-018-33755-7
    Adaptive neuro-fuzzy inference system (ANFIS) includes two novel GIS-based ensemble artificial intelligence approaches called imperialistic competitive algorithm (ICA) and firefly algorithm (FA). This combination could result in ANFIS-ICA and ANFIS-FA models, which were applied to flood spatial modelling and its mapping in the Haraz watershed in Northern Province of Mazandaran, Iran. Ten influential factors including slope angle, elevation, stream power index (SPI), curvature, topographic wetness index (TWI), lithology, rainfall, land use, stream density, and the distance to river were selected for flood modelling. The validity of the models was assessed using statistical error-indices (RMSE and MSE), statistical tests (Friedman and Wilcoxon signed-rank tests), and the area under the curve (AUC) of success. The prediction accuracy of the models was compared to some new state-of-the-art sophisticated machine learning techniques that had previously been successfully tested in the study area. The results confirmed the goodness of fit and appropriate prediction accuracy of the two ensemble models. However, the ANFIS-ICA model (AUC = 0.947) had a better performance in comparison to the Bagging-LMT (AUC = 0.940), BLR (AUC = 0.936), LMT (AUC = 0.934), ANFIS-FA (AUC = 0.917), LR (AUC = 0.885) and RF (AUC = 0.806) models. Therefore, the ANFIS-ICA model can be introduced as a promising method for the sustainable management of flood-prone areas.
  3. Tien Bui D, Shahabi H, Shirzadi A, Chapi K, Pradhan B, Chen W, et al.
    Sensors (Basel), 2018 Jul 31;18(8).
    PMID: 30065216 DOI: 10.3390/s18082464
    In this study, land subsidence susceptibility was assessed for a study area in South Korea by using four machine learning models including Bayesian Logistic Regression (BLR), Support Vector Machine (SVM), Logistic Model Tree (LMT) and Alternate Decision Tree (ADTree). Eight conditioning factors were distinguished as the most important affecting factors on land subsidence of Jeong-am area, including slope angle, distance to drift, drift density, geology, distance to lineament, lineament density, land use and rock-mass rating (RMR) were applied to modelling. About 24 previously occurred land subsidence were surveyed and used as training dataset (70% of data) and validation dataset (30% of data) in the modelling process. Each studied model generated a land subsidence susceptibility map (LSSM). The maps were verified using several appropriate tools including statistical indices, the area under the receiver operating characteristic (AUROC) and success rate (SR) and prediction rate (PR) curves. The results of this study indicated that the BLR model produced LSSM with higher acceptable accuracy and reliability compared to the other applied models, even though the other models also had reasonable results.
  4. He Q, Shahabi H, Shirzadi A, Li S, Chen W, Wang N, et al.
    Sci Total Environ, 2019 May 01;663:1-15.
    PMID: 30708212 DOI: 10.1016/j.scitotenv.2019.01.329
    Landslides are major hazards for human activities often causing great damage to human lives and infrastructure. Therefore, the main aim of the present study is to evaluate and compare three machine learning algorithms (MLAs) including Naïve Bayes (NB), radial basis function (RBF) Classifier, and RBF Network for landslide susceptibility mapping (LSM) at Longhai area in China. A total of 14 landslide conditioning factors were obtained from various data sources, then the frequency ratio (FR) and support vector machine (SVM) methods were used for the correlation and selection the most important factors for modelling process, respectively. Subsequently, the resulting three models were validated and compared using some statistical metrics including area under the receiver operating characteristics (AUROC) curve, and Friedman and Wilcoxon signed-rank tests The results indicated that the RBF Classifier model had the highest goodness-of-fit and performance based on the training and validation datasets. The results concluded that the RBF Classifier model outperformed and outclassed (AUROC = 0.881), the NB (AUROC = 0.872) and the RBF Network (AUROC = 0.854) models. The obtained results pointed out that the RBF Classifier model is a promising method for spatial prediction of landslide over the world.
  5. Shirzadi A, Soliamani K, Habibnejhad M, Kavian A, Chapi K, Shahabi H, et al.
    Sensors (Basel), 2018 Nov 05;18(11).
    PMID: 30400627 DOI: 10.3390/s18113777
    The main objective of this research was to introduce a novel machine learning algorithm of alternating decision tree (ADTree) based on the multiboost (MB), bagging (BA), rotation forest (RF) and random subspace (RS) ensemble algorithms under two scenarios of different sample sizes and raster resolutions for spatial prediction of shallow landslides around Bijar City, Kurdistan Province, Iran. The evaluation of modeling process was checked by some statistical measures and area under the receiver operating characteristic curve (AUROC). Results show that, for combination of sample sizes of 60%/40% and 70%/30% with a raster resolution of 10 m, the RS model, while, for 80%/20% and 90%/10% with a raster resolution of 20 m, the MB model obtained a high goodness-of-fit and prediction accuracy. The RS-ADTree and MB-ADTree ensemble models outperformed the ADTree model in two scenarios. Overall, MB-ADTree in sample size of 80%/20% with a resolution of 20 m (area under the curve (AUC) = 0.942) and sample size of 60%/40% with a resolution of 10 m (AUC = 0.845) had the highest and lowest prediction accuracy, respectively. The findings confirm that the newly proposed models are very promising alternative tools to assist planners and decision makers in the task of managing landslide prone areas.
  6. Tien Bui D, Shirzadi A, Shahabi H, Chapi K, Omidavr E, Pham BT, et al.
    Sensors (Basel), 2019 May 29;19(11).
    PMID: 31146336 DOI: 10.3390/s19112444
    In this study, we introduced a novel hybrid artificial intelligence approach of rotation forest (RF) as a Meta/ensemble classifier based on alternating decision tree (ADTree) as a base classifier called RF-ADTree in order to spatially predict gully erosion at Klocheh watershed of Kurdistan province, Iran. A total of 915 gully erosion locations along with 22 gully conditioning factors were used to construct a database. Some soft computing benchmark models (SCBM) including the ADTree, the Support Vector Machine by two kernel functions such as Polynomial and Radial Base Function (SVM-Polynomial and SVM-RBF), the Logistic Regression (LR), and the Naïve Bayes Multinomial Updatable (NBMU) models were used for comparison of the designed model. Results indicated that 19 conditioning factors were effective among which distance to river, geomorphology, land use, hydrological group, lithology and slope angle were the most remarkable factors for gully modeling process. Additionally, results of modeling concluded the RF-ADTree ensemble model could significantly improve (area under the curve (AUC) = 0.906) the prediction accuracy of the ADTree model (AUC = 0.882). The new proposed model had also the highest performance (AUC = 0.913) in comparison to the SVM-Polynomial model (AUC = 0.879), the SVM-RBF model (AUC = 0.867), the LR model (AUC = 0.75), the ADTree model (AUC = 0.861) and the NBMU model (AUC = 0.811).
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links