Gastrointestinal parasites (GIPs) in elephants have been reported in several studies over the last decades. Nonetheless, comprehensive data on clinicopathology of elephant GIPs, parasite burden threshold value, and the effectiveness of conventional anthelmintic drugs are still lacking. Herein, we have systematically reviewed the available knowledge on elephant GIPs identified among different parts of the world based on their prevalence, epidemiology, pathology, diagnosis, treatment, and control. Two electronic databases were searched for publications that met the inclusion criteria. About19 English journal articles published between year of 2011- 2021 were included. The main GIPs reported in elephants were Cyathostomidae (at least 14 species), Ancylostomidae, Haemonchus contortus, Trichostrongylus colubriformis, Oesophagostomum columbianum, Oesophagostomum aceleatum, Ascarids, Trichurids, Strongyloides, Anophlocephalidae, flukes, and Coccidia across different parts of the world, including Malaysia, Indonesia, Thailand, Myanmar, Sri Lanka, India, Kenya, Nigeria, and South Africa. Most elephants show no clinical signs until the equilibrium between parasite and host is disturbed. The common diagnostic methods for GIPs are traditional direct smear, faecal floatation, sedimentation, and McMaster egg counting technique, all involving morphological identification. However, some articles described the use of molecular detection to characterise common GIPs of elephants. Although benzimidazoles and macrocyclic lactones group of anthelmintic are the most conventional GIPs treatment and control for captive and semi-captive elephants, there is limited data on the threshold value of faecal egg count as the baseline for treatment decision. Over the last decades, various studies regarding elephant GIPs have been conducted. However, more focused and systematic studies are required to enhance our knowledge in multiple aspects of elephant parasitology to find effective solutions and improve elephant health.
Diagnosing tuberculosis (TB) in farmed red deer (Cervus elaphus) is challenging and might require combining cellular and humoral diagnostic tests. Repeated skin-testing with mycobacterial purified protein derivatives (PPDs) might sensitize or desensitize the subjects to both kinds of diagnostic tools. We evaluated the effect of repeated (every 6 months) comparative tuberculin skin testing on skin test and ELISA responsiveness in farmed red deer hinds from a TB-free herd. Eighteen 8-month old hinds were inoculated with bovine and avian PPDs and the mitogen phytohaemagglutinin (PHA), as positive control and concurrently tested by ELISA for antibodies against avian (avian PPD, aPPD and protoplasmatic antigen 3, PPA3) and bovine antigens (bPPD and MPB70). Blood serum was also sampled three weeks after each skin testing round and tested for antibodies against aPPD and bPPD, in order to detect eventual antibody level boosts. Testing took place every six months from winter 2012 until winter 2015.
Animal tuberculosis (TB) caused by infection with Mycobacterium bovis and closely related members of the M. tuberculosis complex (MTC), is often reported in the Eurasian wild boar (Sus scrofa). Tests detecting antibodies against MTC antigens are valuable tools for TB monitoring and control in suids. However, only limited knowledge exists on serology test performance in 2-6 month-old piglets. In this age-class, recent infections might cause lower antibody levels and lower test sensitivity. We examined 126 wild boar piglets from a TB-endemic site using 6 antibody detection tests in order to assess test performance. Bacterial culture (n=53) yielded a M. bovis infection prevalence of 33.9%, while serum antibody prevalence estimated by different tests ranged from 19% to 38%, reaching sensitivities between 15.4% and 46.2% for plate ELISAs and between 61.5% and 69.2% for rapid immunochromatographic tests based on dual path platform (DPP) technology. The Cohen kappa coefficient of agreement between DPP WTB (Wildlife TB) assay and culture results was moderate (0.45) and all other serological tests used had poor to fair agreements. This survey revealed the ability of several tests for detecting serum antibodies against the MTC antigens in 2-6 month-old naturally infected wild boar piglets. The best performance was demonstrated for DPP tests. The results confirmed our initial hypothesis of a lower sensitivity of serology for detecting M. bovis-infected piglets, as compared to older wild boar. Certain tests, notably the rapid animal-side tests, can contribute to TB control strategies by enabling the setup of test and cull schemes or improving pre-movement testing. However, sub-optimal test performance in piglets as compared to that in older wild boar should be taken into account.
Tuberculosis (TB) is a chronic inflammatory and zoonotic disease caused by Mycobacterium tuberculosis complex (MTBC) members, which affects various domestic animals, wildlife, and humans. Some wild animals serve as reservoir hosts in the transmission and epidemiology of the disease. Therefore, the monitoring and surveillance of both wild and domestic hosts are critical for prevention and control strategies. For TB diagnosis, the single intradermal tuberculin test or the single comparative intradermal tuberculin test, and the gamma-interferon test, which is regarded as an ancillary test, are used. Postmortem examination can identify granulomatous lesions compatible with a diagnosis of TB. In contrast, smears of the lesions can be stained for acid-fast bacilli, and samples of the affected organs can be subjected to histopathological analyses. Culture is the gold standard test for isolating mycobacterial bacilli because it has high sensitivity and specificity compared with other methods. Serology for antibody detection allows the testing of many samples simply, rapidly, and inexpensively, and the protocol can be standardized in different laboratories. Molecular biological analyses are also applicable to trace the epidemiology of the disease. In conclusion, reviewing the various techniques used in MTBC diagnosis can help establish guidelines for researchers when choosing a particular diagnostic method depending on the situation at hand, be it disease outbreaks in wildlife or for epidemiological studies. This is because a good understanding of various diagnostic techniques will aid in monitoring and managing emerging pandemic threats of infectious diseases from wildlife and also preventing the potential spread of zoonotic TB to livestock and humans. This review aimed to provide up-to-date information on different techniques used for diagnosing TB at the interfaces between wildlife, livestock, and humans.
Mycoplasma ovis (formerly Eperythrozoon ovis) is an epierythrocytic parasitic bacterium of small ruminants known as haemotropic mycoplasma, which is transmitted mechanically by biting flies and contaminated instruments. Acute mycoplasmosis causes severe haemolytic anaemia and mortality in young animals. At the same time, chronic disease may produce mild anaemia and varying degrees of morbidity depending on several factors, including age, reproductive status, the plane of nutrition, immunological status and the presence of concurrent infection. Haemotropic Mycoplasma ovis is currently recognised as an emerging zoonotic pathogen which is widely distributed in the sheep and goat producing areas of tropics and subtropics, where the disease is nearly endemic. Human infection has been reported in pregnant women, immunocompromised patients and people exposed to animals and arthropods. The current diagnosis of haemoplasma relies on microscopic evaluation of Giemsa-stained blood smear and PCR. Although there are few published reports on the incidence of haemotropic Mycoplasma ovis infection of small ruminants in Malaysia, information on its prevalence, risk factors, severity and economic impacts is grossly inadequate. Therefore, a large-scale survey of small ruminant flocks is necessary to elucidate the current seroprevalence status and molecular characteristics of haemotropic M. ovis infection in Malaysia using ELISA and PCR sequencing technologies. In the future, surveillance programs, including vector forecast, quarantine, monitoring by periodic surveys and public enlightenment, will limit the internal and transboundary spread of M. ovis, enhance control efforts and mitigate production losses in Malaysia.
Wild animals are considered reservoirs, contributing to the transmission of emerging zoonotic diseases such as tuberculosis (TB). A cross-sectional study was conducted by opportunistic sampling from fresh carcasses of free-ranging wild boar (n = 30), and free-ranging wild macaques (n = 42). Stained smears from these tissues were tested for acid-fast bacilli (AFB) with Ziehl-Neelsen staining. Mycobacterial culture was conducted using Lowenstein-Jensen media and Middlebrook 7H11 agar media. Polymerase chain reaction (PCR) was performed through the detection of the 16S rRNA gene, with multiple sets of primers for the detection of Mycobacterium tuberculosis complex (MTBC) and Mycobacterium avium complex (MAC). In wild boars, 30% (9/30; 95% Confidence Interval: 16.7-47.9%) of examined samples showed gross tuberculosis-like lesions (TBLLs). Multiple nodular lesions that were necrotic/miliary with cavitation were found in the submandibular lymph nodes, tonsils, lungs, kidney and liver, while single nodular lesions were found in the mediastinal lymph nodes, spleen and mesenteric lymph nodes. Conventional PCR on the submandibular lymphoid tissues of wild boar (nine samples with TBLLs and three non-TBLL samples) showed that 75% (9/12) were positive for Mycobacterium bovis (95% CI: 46.8-91.1), and 91% (CI: 64.6-98.5) were positive for Mycobacterium avium. For macaques, 33.3% (10/30) were positive for M. avium (95% CI: 19.2-51.2) but negative for MTBC.
Mites infestation and gastrointestinal parasites including coccidia are common problems reported in pets, petting farms and farmed practices. Sarcoptes sp. and Cheyletiella sp. could be a potential zoonosis from rabbits to human. Detection of mites and coccidia with their zoonotic potential in meat-farmed rabbits from three (3) commercial farms in Selangor were investigated. Tape impression, fur pluck, skin scraping and ear swab tests were used for mites detection and faecal samples was used for coccidia examination by using McMaster's technique and the identification of Eimeria spp. was further analysed by sporulation technique. The overall prevalence of mites and Eimeria spp. (oocysts) in rabbits were 51.85% ± 0.38 (standard deviation; S.D.) and 76.47% ± 0.42 respectively. Sarcoptes scabiei was the most frequent mite found (25.92% ± 0.44), followed by Cheyletiella parasitovorax and Psoroptes cuniculi. Nine Eimeria spp. were identified and the oocysts of E. perforans shows the highest prevalence (64.71% ± 3.97) followed by E. exigua, E. coecicola, E. magna, E. flavescens, E. irresidua, E. intestinalis, E. media and E. stiedai. There was a significant difference (p = 0.013) where large-scale farm has a higher prevalence of coccidia than small scale farms apparently due to the excessive stocking density as coccidia are easily transmitted among rabbits through ingestion of sporulated oocysts. In conclusion, mites and coccidia are commonly present in the commercial rabbit farms, thus control and preventive measures should be executed to reduce the incidence of parasites. The zoonotic mites Sarcoptes scabiei and Cheyletiella parasitovorax detected in this study could be regarded as a public health concern especially when handling the rabbit.
It is important to provide a baseline of fungal composition in the captive wildlife environment to better understand their role in overall wildlife health. The objectives were to identify species of fungi existing within wildlife animal enclosures and their environment at the National Wildlife Rescue Centre (NWRC) and the National Zoo, Malaysia and to describe their medical and veterinary importance. Samples of air, wall or floor swab, enrichment swab and soil were taken from the animal enclosures, exercise yard and enrichments at NWRC and National Zoo respectively. All samples including those pre-treated samples were plated onto Sabouraud's Dextrose Agar (SDA). Numerous fungi were grown on all sampling SDA plates regardless by either single or multiple growth. Samples of air in both NWRC and National Zoo had the highest growth of Penicillium spp. with a prevalence of 31.2% and 83.7% respectively. Samples of swab from the wall, floor and enrichments were predominantly by Candida spp. (42.6%) in NWRC and Penicillium spp. (41.6%) in the National Zoo. Prevalence of multiple fungi isolated from the soil samples in NWRC were 57.9% and yeast species was the most common in National Zoo with a prevalence of 88.9%. Overall, 29 and 8 isolates were found in both samples from the NWRC and National Zoo with a predominant species of potential zoonotic fungi have been identified in both premises. The expected fungus Aspergillus spp. was not isolated in all samples in NWRC. Prevalent fungal species found in this study are known to cause disease in animals and humans as primary pathogen and also as opportunistic pathogens that may also cause infection. Thus, health safety precautions should be considered particularly in dealing with conservation of endangered wildlife species, along with personnel and public involvements.
Natural salt lick (sira) is a strategic localisation for ecological wildlife assemblage to exhibit geophagy which may act as a population dynamic buffer of prey and predators. Undoubtedly, many agree that geophagy at natural licks is linked to nutritional ecology, health and assembly places facilitating social interaction of its users. Overall, natural salt licks not only save energy of obtaining nutrient leading to health maintenance but also forms the basis of population persistence. The Royal Belum Rainforest, Malaysia (Royal Belum) is a typical tropical rainforest in Malaysia rich in wildlife which are mainly concentrated around the natural salt lick. Since this is one of the most stable fauna ecology forest in Malaysia, it is timely to assess its impact on the Malayan tiger (Panthera tigris) home range dynamics. The three-potential home ranges of the Malayan tiger in this rainforest were selected based on animal trails or foot prints surrounding the salt lick viz (e.g. Sira Kuak and Sira Batu; Sira Rambai and Sira Buluh and Sira Papan) as well as previous sightings of a Malayan tiger in the area, whose movement is dependent on the density and distribution of prey. Camera traps were placed at potential animal trails surrounding the salt lick to capture any encountered wildlife species within the area of the camera placements. Results showed that all home ranges of Malayan tiger were of no significance for large bodied prey availability such as sambar deer (Rusa unicolor), and smaller prey such as muntjacs (Muntiacus muntjac) and wild boar (Sus scrofa). Interestingly, all home range harbour the Malayan tiger as the only sole predator. The non-significance of prey availability at each home range is attributed to the decline of the Malayan tiger in the rainforest since tigers are dependant on the movement of its preferred prey surrounding natural salt licks. Thus, the information from this study offers fundamental knowledge on the importance of prey-predator interaction at salt lick which will help in designing strategy in rewilding or rehabilitation programs of the Malayan tiger at the Royal Belum Rainforest.
Tuberculosis (TB) is a chronic inflammatory and zoonotic disease caused by Mycobacterium tuberculosis complex (MTBC) members, affecting several domestic animals, wildlife species and humans. The preliminary investigation was aimed to detect antibody against MTBC among indigenous wildlife which are free-ranged wild boar, free-ranged wild macaques and captive Asian elephants in selected areas of Selangor and elephant conservation centre in Pahang, respectively. The results indicate that MTBC serodetection rate in wild boar was 16.7% (7.3-33.5 at 95% confidence interval (CI)) using an in-house ELISA bPPD IgG and 10% (3.5-25.6 at 95% CI) by DPP®VetTB assay, while the wild macaques and Asian elephant were seronegative. The univariate analysis indicates no statistically significant difference in risk factors for sex and age of wild boar but there was a significant positive correlation (P<0.05) between bovine TB in dairy cattle and wild boar seropositivity in the Sepang district.