METHODS: PubMed, IEEE Xplore, Google Scholar, and Scopus were searched for relevant studies. All studies that used ML/DL to detect or early-predict the onset of sepsis in the adult population using EHRs were considered. Data were extracted and analyzed from all studies that met the criteria and were also evaluated for their quality.
RESULTS: This systematic review examined 1942 articles, selecting 42 studies while adhering to strict criteria. The chosen studies were predominantly retrospective (n = 38) and spanned diverse geographic settings, with a focus on the United States. Different datasets, sepsis definitions, and prevalence rates were employed, necessitating data augmentation. Heterogeneous parameter utilization, diverse model distribution, and varying quality assessments were observed. Longitudinal data enabled early sepsis prediction, and quality criteria fulfillment varied, with inconsistent funding-article quality correlation.
CONCLUSIONS: This systematic review underscores the significance of ML/DL methods for sepsis detection and early prediction through EHR data.
METHOD: In this study, the MNSI data were collected from the Epidemiology of Diabetes Interventions and Complications (EDIC) clinical trials. Two different datasets with different MNSI variable combinations based on the results from the eXtreme Gradient Boosting feature ranking technique were used to analyze the performance of eight different conventional ML algorithms.
RESULTS: The random forest (RF) classifier outperformed other ML models for both datasets. However, all ML models showed almost perfect reliability based on Kappa statistics and a high correlation between the predicted output and actual class of the EDIC patients when all six MNSI variables were considered as inputs.
CONCLUSIONS: This study suggests that the RF algorithm-based classifier using all MNSI variables can help to predict the DSPN severity which will help to enhance the medical facilities for diabetic patients.