Displaying all 8 publications

Abstract:
Sort:
  1. Dzul Azri Mohamed Noor, Baharudin Ibrahim, Vikneswaran, Murugaiyah, Balamurugan, Tangiisuran, Amer Hayat Khan, Fahad Saleem, et al.
    MyJurnal
    Medicine is an essential need for many people to treat their illness. Creating awareness among general public regarding medicines use and common illnesses can promote healthy lifestyles among them. The objectives of this study are to determine public knowledge and perception of medicines use and; to explore the pattern of medicines used in the past 3 months. A cross‐sectional survey was carried out among the general public in Pulau Pinang. People who were using medications during the time of the survey or in the last 3 months were invited to participate in the study. Only Malaysians ≥18 years were selected by convenient sampling to participate in the survey. The results of this study showed that most of the respondents were using some sort of medications during the last 3 months. Around 30% did not read the label of the medicines before use. Furthermore, participants had low awareness towards some aspects of medicines use such as the name of generic and brand medicines, overuse of paracetamol or vitamins and their side effects, discontinuation of antibiotics, storing ointments and syrups in refrigerator, and the side effects of medicines registered in Malaysia. Efforts are still needed to increase the awareness of medicines use among the general public. More quantitative studies are needed to understand the factors that may influence public knowledge and perceptions on the use of medicines.
  2. Maryam Farooqui, Mohamed Azmi Hassali, Aishah Knight Abdul Shatar, Asrul Akmal Shafie, Muhammad Aslam Farooqui, Fahad Saleem, et al.
    MyJurnal
    Objectives: Prayers, spiritual healing, yoga, meditation, t'ai chi, qigong and support groups are classified as mind body complementary therapies (MBCTs). The study aimed to examine the prevalence of MBCTs use and the Health Related Quality of Life (HRQoL) in a group of Malaysian cancer patients.
    Methods: This crosssectional study was conducted on 184 cancer patients at the oncology clinic of Penang general hospital, Malaysia. MBCTs was assessed using a self- administered questionnaire while the HRQoL of the participants was assessed by using the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire (EORTC QLQ-C30).
    Results: Among the complementary and alternative medicines (CAM) users, 75(40.7%) patients self-reported using MBCTs while having cancer. Majority of MBCTs users were female 60(80%, p=0.01), aged between 38 and 57 (58%), and were of Malay ethnicity (61%). Socio-demographic factors including age (r=0.15, p=0.03) and monthly house-hold income (r= -0.25, p<0.001) were significantly correlated with MBCTs use. Prayers for health reasons was the most frequently practised MBCTs modality, followed by spiritual practices 20(10.8%), meditation 7(5.9%), t'ai chi 7(3.8%), music therapy 4(2.1%), qigong 1(0.5%), hypnotherapy 1(0.5%), and reiki 1(0.5%). Recommendations from friends and family members 53(70%) were the most common reasons of MBCTs use followed by patient's own will 22(29.3%). Health related Quality of Life (HRQoL) scores showed significant difference in all functional and symptoms scores among MBCTs users and non-users (p<0.05). Conclusion: The study helps to identify numerous MBCTs commonly practised by a group of Malaysian cancer patients. Prayers specifically for health reasons and spiritual practices were somewhat common among patients. Viewing MBCTs, not as alternative but to complement conventional cancer therapies may help to address cancer patients' emotional and psychological needs.
    Study site: Oncology clinic, Hospital Pulau Pinang, Malaysia
  3. Khan FSA, Mubarak NM, Tan YH, Khalid M, Karri RR, Walvekar R, et al.
    J Hazard Mater, 2021 07 05;413:125375.
    PMID: 33930951 DOI: 10.1016/j.jhazmat.2021.125375
    Industrial effluents contain several organic and inorganic contaminants. Among others, dyes and heavy metals introduce a serious threat to drinking waterbodies. These pollutants can be noxious or carcinogenic in nature, and harmful to humans and different aquatic species. Therefore, it is of high importance to remove heavy metals and dyes to reduce their environmental toxicity. This has led to an extensive research for the development of novel materials and techniques for the removal of heavy metals and dyes. One route to the removal of these pollutants is the utilization of magnetic carbon nanotubes (CNT) as adsorbents. Magnetic carbon nanotubes hold remarkable properties such as surface-volume ratio, higher surface area, convenient separation methods, etc. The suitable characteristics of magnetic carbon nanotubes have led them to an extensive search for their utilization in water purification. Along with magnetic carbon nanotubes, the buckypaper (BP) membranes are also favorable due to their unique strength, high porosity, and adsorption capability. However, BP membranes are mostly used for salt removal from the aqueous phase and limited literature shows their applications for removal of heavy metals and dyes. This study focuses on the existence of heavy metal ions and dyes in the aquatic environment, and methods for their removal. Various fabrication approaches for the development of magnetic-CNTs and CNT-based BP membranes are also discussed. With the remarkable separation performance and ultra-high-water flux, magnetic-CNTs, and CNT-based BP membranes have a great potential to be the leading technologies for water treatment in future.
  4. Khan FSA, Mubarak NM, Khalid M, Walvekar R, Abdullah EC, Ahmad A, et al.
    Sci Rep, 2021 01 12;11(1):843.
    PMID: 33437011 DOI: 10.1038/s41598-020-80767-3
    Modified multi-walled carbon nanotubes (f-MWCNTs) and hydroxyapatite nanorods (n-HA) were reinforced into polypropylene (PP) with the support of a melt compounding approach. Varying composition of f-MWCNTs (0.1-0.3 wt.%) and nHA (15-20 wt.%) were reinforced into PP, to obtain biocomposites of different compositions. The morphology, thermal and mechanical characteristics of PP/n-HA/f-MWCNTs were observed. Tensile studies reflected that the addition of f-MWCNTs is advantageous in improving the tensile strength of PP/n-HA nanocomposites but decreases its Young's modulus significantly. Based on the thermal study, the f-MWCNTs and n-HA were known to be adequate to enhance PP's thermal and dimensional stability. Furthermore, MTT studies proved that PP/n-HA/f-MWCNTs are biocompatible. Consequently, f-MWCNTs and n-HA reinforced into PP may be a promising nanocomposite in orthopedics industry applications such as the human subchondral bone i.e. patella and cartilage and fabricating certain light-loaded implants.
  5. Khan FSA, Mubarak NM, Tan YH, Karri RR, Khalid M, Walvekar R, et al.
    Environ Sci Pollut Res Int, 2020 Dec;27(35):43526-43541.
    PMID: 32909134 DOI: 10.1007/s11356-020-10482-z
    Substantial discharge of hazardous substances, especially dyes and heavy metal ions to the environment, has become a global concern due to many industries neglecting the environmental protocols in waste management. A massive discharge of contaminantsfrom different anthropogenic activities, can pose alarming threats to living species and adverse effect to the ecosystem stability. In the process of treating the polluted water, various methods and materials are used. Hybrid nanocomposites have attained numerous interest due to the combination of remarkable features of the organic and inorganic elements in a single material. In this regards, carbon and polymer based nanocomposites have gained particular interest because of their tremendous magnetic properties and stability. These nanocomposites can be fabricated using several approaches that include filling, template, hydrothermal, pulsed-laser irradiation, electro-spinning, detonation induced reaction, pyrolysis, ball milling, melt-blending, and many more. Moreover, carbon-based and polymer-based magnetic nanocomposites have been utilized for an extensive number of applications such as removal of heavy metal and dye adsorbents, magnetic resonance imaging, and drug delivery. This review emphasized mainly on the production of magnetic carbon and polymer nanocomposites employing various approaches and their applications in water and wastewater treatment. Furthermore, the future opportunities and challenges in applying magnetic nanocomposites for heavy metal ion and dye removal from water and wastewater treatment plant.
  6. Khan FSA, Mubarak NM, Khalid M, Walvekar R, Abdullah EC, Mazari SA, et al.
    Environ Sci Pollut Res Int, 2020 Jul;27(19):24342-24356.
    PMID: 32306264 DOI: 10.1007/s11356-020-08711-6
    Due to the rapid growth in the heavy metal-based industries, their effluent and local dumping have created significant environmental issues. In the past, typically, removal of heavy metals was handled by reverse osmosis and ion exchange techniques, but these methods have many disadvantages. Therefore, extensive work into the development of improved techniques has increased, especially for heavy metal removal. Many countries are currently researching new materials and techniques based on nanotechnology for various applications that involve extracting heavy metals from different water sources such as wastewater, groundwater, drinking water and surface water. Nanotechnology provides the possibility of enhancing existing techniques to tackle problems more efficiently. The development in nanotechnology has led to the discovery of many new materials such as magnetic nanoparticles. These nanoparticles demonstrate excellent properties such as surface-volume ratio, higher surface area, low toxicity and easy separation. Besides, magnetic nanoparticles can be easily and efficiently recovered after adsorption compared with other typical adsorbents. This review mainly emphasises on the efficiency of heavy metal removal using magnetic nanoadsorbent from aqueous solution. In addition, an in-depth analysis of the synthesis, characterisation and modification approaches of magnetic nanoparticles is systematically presented. Furthermore, future opportunities and challenges of using magnetic particles as an adsorbent for the removal of heavy metals are also discussed.
  7. Mehmood A, Khan FSA, Mubarak NM, Mazari SA, Jatoi AS, Khalid M, et al.
    Environ Sci Pollut Res Int, 2021 Oct;28(39):54477-54496.
    PMID: 34424475 DOI: 10.1007/s11356-021-16045-0
    Oil spills are a major contributor to water contamination, which sets off a significant impact on the environment, biodiversity, and economy. Efficient removal of oil spills is needed for the protection of marine species as well as the environment. Conventional approaches are not efficient enough for oil-water separation; therefore, effective strategies and efficient removal techniques (and materials) must be developed to restore the contaminated marine to its normal ecology. Several research studies have shown that nanotechnology provides efficient features to clean up these oil spills from the water using magnetic nanomaterials, particularly carbon/polymer-based magnetic nanocomposites. Surface modification of these nanomaterials via different techniques render them with salient innovative features. The present review discusses the advantages and limitations of conventional and advanced techniques for the oil spills removal from wastewater. Furthermore, the synthesis of magnetic nanocomposites, their utilization in oil-water separation, and adsorption mechanisms are discussed. Finally, the advancement and future perspectives of magnetic nanocomposites (particularly of carbon and polymer-based magnetic nanocomposites) in environmental remediation are presented.
  8. Mehmood A, Khan FSA, Mubarak NM, Tan YH, Karri RR, Khalid M, et al.
    Environ Sci Pollut Res Int, 2021 Apr;28(16):19563-19588.
    PMID: 33651297 DOI: 10.1007/s11356-021-12589-3
    Numerous contaminants in huge amounts are discharged to the environment from various anthropogenic activities. Waterbodies are one of the major receivers of these contaminants. The contaminated water can pose serious threats to humans and animals, by distrubing the ecosystem. In treating the contaminated water, adsorption processes have attained significant maturity due to lower cost, easy operation and environmental friendliness. The adsorption process uses various adsorbent materials and some of emerging adsorbent materials include carbon- and polymer-based magnetic nanocomposites. These hybrid magnetic nanocomposites have attained extensive applications in water treatment technologies due to their magnetic properties as well as combination of unique characteristics of organic and inorganic elements. Carbon- and polymer-related magnetic nanocomposites are more adapted materials for the removal of various kinds of contaminants from waterbodies. These nanocomposites can be produced via different approaches such as filling, pulse-laser irradiation, ball milling, and electro-spinning. This comprehensive review is compiled by reviewing published work of last the latest recent 3 years. The review article extensively focuses on different approaches for producing various carbon- and polymer-based magnetic nanocomposites, their merits and demerits and applications for sustainable water purification. More specifically, use of carbon- and polymer-based magnetic nanocomposites for removal of heavy metal ions and dyes is discussed in detail, critically analyzed and compared with other technologies. In addition, commercial viability in terms of regeneration of adsorbents is also reviewed. Furthermore, the future challenges and prospects in employing magnetic nanocomposites for contaminant removal from various water sources are presented.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links