Non-albicans Candida species are emerging in the nosocomial environment, with the multidrug-resistant (MDR) species Candida auris being the most notorious example. Consequently, rapid and accurate species identification has become essential. The objective of this study was to evaluate five commercially available chromogenic media for the presumptive identification of C. auris Two novel chromogenic formulations, CHROMagar Candida Plus (CHROMagar) and HiCrome C. auris MDR selective agar (HiMedia), and three reference media, CandiSelect (Bio-Rad), CHROMagar Candida (CHROMagar), and Chromatic Candida (Liofilchem), were inoculated with a collection of 9 genetically diverse C. auris strains and 35 strains from closely related comparator species. After 48 h of incubation, the media were evaluated for their ability to detect and identify C. auris All media had the same limitations in the differentiation of the more common species Candida dubliniensis and Candida glabrata Only on CHROMagar Candida Plus did C. auris colonies develop a species-specific coloration. Nevertheless, the closely related pathogenic species Candida pseudohaemulonii and Candida vulturna developed a similar appearance as C. auris on this medium. CHROMagar Candida Plus was shown to be superior in the detection and identification of C. auris, with 100% inclusivity for C. auris compared to 0% and 33% for the reference media and HiCrome C. auris MDR selective agar, respectively. Although C. vulturna and C. pseudohaemulonii can cause false positives, CHROMagar Candida Plus was shown to be a valuable addition to the plethora of mostly molecular methods for C. auris detection and identification.
Candida vulturna is a new member of the Candida haemulonii species complex that recently received much attention as it includes the emerging multidrug-resistant pathogen Candida auris. Here, we describe the high-quality genome sequence of C. vulturna type strain CBS 14366T to cover all genomes of pathogenic C. haemulonii species complex members.
Invasive fungal infections caused by non-albicans Candida species are increasingly reported. Recent advances in diagnostic and molecular tools enabled better identification and detection of emerging pathogenic yeasts. The Candida haemulonii species complex accommodates several rare and recently described pathogenic species, C. duobushaemulonii, C. pseudohaemulonii, C. vulturna, and the most notorious example is the outbreak-causing multi-drug resistant member C. auris. Here, we describe a new clinically relevant yeast isolated from geographically distinct regions, representing the proposed novel species C. khanbhai, a member of the C. haemulonii species complex. Moreover, several members of the C. haemulonii species complex were observed to be invalidly described, including the clinically relevant species C. auris and C. vulturna. Hence, the opportunity was taken to correct this here, formally validating the names of C. auris, C. chanthaburiensis, C. konsanensis, C. metrosideri, C. ohialehuae, and C. vulturna.
The global burden of the endemic mycoses (blastomycosis, coccidioidomycosis, emergomycosis, histoplasmosis, paracoccidioidomycosis, sporotrichosis, and talaromycosis) continues to rise yearly and these infectious diseases remain a leading cause of patient morbidity and mortality worldwide. Management of the associated pathogens requires a thorough understanding of the epidemiology, risk factors, diagnostic methods and performance characteristics in different patient populations, and treatment options unique to each infection. Guidance on the management of these infections has the potential to improve prognosis. The recommendations outlined in this Review are part of the "One World, One Guideline" initiative of the European Confederation of Medical Mycology. Experts from 23 countries contributed to the development of these guidelines. The aim of this Review is to provide an up-to-date consensus and practical guidance in clinical decision making, by engaging physicians and scientists involved in various aspects of clinical management.