Displaying publications 1 - 20 of 273 in total

Abstract:
Sort:
  1. Alhajj MN, Halboub E, Yacob N, Al-Maweri SA, Ahmad SF, Celebić A, et al.
    BMC Oral Health, 2024 Mar 04;24(1):303.
    PMID: 38439020 DOI: 10.1186/s12903-024-04083-2
    BACKGROUND: The present systematic review and meta-analysis investigated the available evidence about the adherence of Candida Albicans to the digitally-fabricated acrylic resins (both milled and 3D-printed) compared to the conventional heat-polymerized acrylic resins.

    METHODS: This study followed the guidelines of the Preferred Reporting Items for Systematic Review and Meta-analyses (PRISMA). A comprehensive search of online databases/search tools (Web of Science, Scopus, PubMed, Ovid, and Google Scholar) was conducted for all relevant studies published up until May 29, 2023. Only in-vitro studies comparing the adherence of Candida albicans to the digital and conventional acrylic resins were included. The quantitative analyses were performed using RevMan v5.3 software.

    RESULTS: Fourteen studies were included, 11 of which were meta-analyzed based on Colony Forming Unit (CFU) and Optical Density (OD) outcome measures. The pooled data revealed significantly lower candida colonization on the milled digitally-fabricated compared to the heat-polymerized conventionally-fabricated acrylic resin materials (MD = - 0.36; 95%CI = - 0.69, - 0.03; P = 0.03 and MD = - 0.04; 95%CI = - 0.06, - 0.01; P = 0.0008; as measured by CFU and OD respectively). However, no differences were found in the adhesion of Candida albicans between the 3D-printed digitally-fabricated compared to the heat-polymerized conventionally-fabricated acrylic resin materials (CFU: P = 0.11, and OD: P = 0.20).

    CONCLUSION: The available evidence suggests that candida is less likely to adhere to the milled digitally-fabricated acrylic resins compared to the conventional ones.

    Matched MeSH terms: Candida*; Candida albicans*
  2. Yacob N, Ahmad NA, Safii SH, Yunus N, Abdul Razak F
    J Prosthet Dent, 2023 Jul;130(1):131.e1-131.e7.
    PMID: 37210224 DOI: 10.1016/j.prosdent.2023.04.017
    STATEMENT OF PROBLEM: How the build orientation of a 3-dimensionally (3D) printed denture affects microbial adhesion is unclear.

    PURPOSE: The purpose of this in vitro study was to compare the adherence of Streptococcus spp. and Candida spp. on 3D-printed denture bases prepared at different build orientations with conventional heat-polymerized resin.

    MATERIAL AND METHODS: Resin specimens (n=5) with standardized 28.3 mm2 surface area were 3D printed at 0 and 60 degrees, and heat-polymerized (3DP-0, 3DP-60, and HP, respectively). The specimens were placed in a Nordini artificial mouth (NAM) model and exposed to 2 mL of clarified whole saliva to create a pellicle-coated substratum. Suspensions of Streptococcus mitis and Streptococcus sanguinis, Candida albicans and Candida glabrata, and a mixed species, each at 108 cfu/mL were pumped separately into the model for 24 hours to promote microbial adhesion. The resin specimens were then removed, placed in fresh media, and sonicated to dislodge attached microbes. Each suspension (100 μL) was aliquoted and spread on agar plates for colony counting. The resin specimens were also examined under a scanning electron microscope. The interaction between types of specimen and groups of microbes was examined with 2-way ANOVA and then further analysis with Tukey honest significant test and Kruskal-Wallis post hoc tests (α=.05).

    RESULTS: A significant interaction was observed between the 3DP-0, 3DP-60, and HP specimen types and the groups of microbes adhering to the corresponding denture resin specimens (Pcandida was 3.98-times lower on the 3DP-0 than that of HP (P

    Matched MeSH terms: Candida*; Candida albicans
  3. Baharuddin NS, Abdullah H, Abdul Wahab WN
    J Pharm Bioallied Sci, 2015 Jan-Mar;7(1):15-20.
    PMID: 25709331 DOI: 10.4103/0975-7406.148742
    Galls of Quercus infectoria have been traditionally used to treat common ailments, including yeast infections caused by Candida species.
    Matched MeSH terms: Candida
  4. Ng KP, Madasamy M, Saw TL, Baki A, He J, Soo-Hoo TS
    Mycopathologia, 1999 10 26;144(3):135-40.
    PMID: 10531679
    The distribution of Candida species was examined using 1114 yeasts isolated from various clinical specimens. The isolates were identified by germ tube test, hyphal/pseudohyphae and chlamydoconidia production and carbohydrate assimilation test using ten carbohydrates (glucose, sucrose, trehalose, cellobiose, arabinose, galactose, mannitol, raffinose, lactose and maltose). Among the 1114 isolates studied, 9 species of Candida were identified and the relative frequency of isolation was C. albicans (44.2%), C. parapsilosis (26.0%), C. tropicalis (17.7%), C. glabrata (9.6%), C. krusei (1.2%), C. rugosa (0.6%), C. guilliermondii (0.2%), C. lusitaniae (0.08%) and C. kefyr (0.08%). Non-C. albicans was the most common Candida species isolated from blood, respiratory system, urine and skin. The isolate from vaginal swabs was predominantly C. albicans. 82.2% of C. glabrata and 64.2% of C. krusei isolated in this study were from vaginal swabs.
    Matched MeSH terms: Candida/classification*; Candida/growth & development; Candida/isolation & purification*; Candida albicans/classification; Candida albicans/growth & development; Candida albicans/isolation & purification
  5. Basri M, Ampon K, Yunus WM, Razak CN, Salleh AB
    J Chem Technol Biotechnol, 1994 Jan;59(1):37-44.
    PMID: 7764496
    A simple and effective method of lipase immobilization is described. Lipase from Candida rugosa was first modified with several hydrophobic modifiers before being adsorbed on to organic polymer beads. The soluble hydrophobic lipase derivatives adsorbed more strongly on to the various polymers as compared with the native lipase. The optimal adsorption temperature of the native and modified lipases on all the polymers was 40 degrees C. The optimal pH of adsorption was between 6 and 7. Lipase immobilized in this manner produced high catalytic recoveries which are affected by the type of modifiers, degree of modification and type of supports used. Monomethoxypolyethylene glycol (1900) activated with p-nitrophenyl chloroformate was found to be the best modifier of the enzyme at 95% modification, for adsorption to the polymers. Increasing the degree of modification of the enzyme increased the activity which was immobilized. Generally, both native and hydrophobic lipase derivatives showed higher specific activities when immobilized on polar polymers compared with non-polar polymers.
    Matched MeSH terms: Candida/enzymology
  6. Ponnampalam JT, Musa J
    Med J Malaya, 1965 Dec;20(2):144-5.
    PMID: 4221975
    Matched MeSH terms: Candida/isolation & purification*
  7. Arzmi MH, Dashper S, McCullough M
    J Oral Pathol Med, 2019 Aug;48(7):546-551.
    PMID: 31183906 DOI: 10.1111/jop.12905
    The oral microbiome is composed of microorganisms residing in the oral cavity, which are critical components of health and disease. Disruption of the oral microbiome has been proven to influence the course of oral diseases, especially among immunocompromised patients. Oral microbiome is comprised of inter-kingdom microorganisms, including yeasts such as Candida albicans, bacteria, archaea and viruses. These microorganisms can interact synergistically, mutualistically and antagonistically, wherein the sum of these interactions dictates the composition of the oral microbiome. For instance, polymicrobial interactions can improve the ability of C albicans to form biofilm, which subsequently increases the colonisation of oral mucosa by the yeast. Polymicrobial interactions of C albicans with other members of the oral microbiome have been reported to enhance the malignant phenotype of oral cancer cells, such as the attachment to extracellular matrix molecules (ECM) and epithelial-mesenchymal transition (EMT). Polymicrobial interactions may also exacerbate an inflammatory response in oral epithelial cells, which may play a role in carcinogenesis. This review focuses on the role of polymicrobial interactions between C albicans and other oral microorganisms, including its role in promoting oral carcinogenesis.
    Matched MeSH terms: Candida albicans*
  8. de Jong AW, Al-Obaid K, Mohd Tap R, Gerrits van den Ende B, Groenewald M, Joseph L, et al.
    Med Mycol, 2023 Feb 03;61(2).
    PMID: 36694950 DOI: 10.1093/mmy/myad009
    Invasive fungal infections caused by non-albicans Candida species are increasingly reported. Recent advances in diagnostic and molecular tools enabled better identification and detection of emerging pathogenic yeasts. The Candida haemulonii species complex accommodates several rare and recently described pathogenic species, C. duobushaemulonii, C. pseudohaemulonii, C. vulturna, and the most notorious example is the outbreak-causing multi-drug resistant member C. auris. Here, we describe a new clinically relevant yeast isolated from geographically distinct regions, representing the proposed novel species C. khanbhai, a member of the C. haemulonii species complex. Moreover, several members of the C. haemulonii species complex were observed to be invalidly described, including the clinically relevant species C. auris and C. vulturna. Hence, the opportunity was taken to correct this here, formally validating the names of C. auris, C. chanthaburiensis, C. konsanensis, C. metrosideri, C. ohialehuae, and C. vulturna.
    Matched MeSH terms: Candida/genetics
  9. Karajacob AS, Azizan NB, Al-Maleki ARM, Goh JPE, Loke MF, Khor HM, et al.
    PLoS One, 2023;18(4):e0284043.
    PMID: 37068057 DOI: 10.1371/journal.pone.0284043
    Overgrowth of Candida yeasts in the oral cavity may result in the development of oral thrush in immunocompromised individuals. This study analyzed the diversity and richness of the oral mycobiota of patients clinically diagnosed with oral thrush (OT), follow-up of oral thrush patients after antifungal therapy (AT), and healthy controls (HC). Oral rinse and oral swab samples were collected from 38 OT patients, 21 AT patients, and 41 healthy individuals (HC). Pellet from the oral rinse and oral swab were used for the isolation of oral Candida yeasts on Brilliance Candida Agar followed by molecular speciation. ITS1 amplicon sequencing using Illumina MiSeq was performed on DNA extracted from the oral rinse pellet of 16 OT, 7 AT, and 7 HC oral rinse samples. Trimmed sequence data were taxonomically grouped and analyzed using the CLC Microbial Genomics Module workflow. Candida yeasts were isolated at significantly higher rates from oral rinse and swab samples of OT (68.4%, p < 0.001) and AT (61.9%, p = 0.012) patients, as compared to HC (26.8%). Predominance of Candida albicans specifically, was noted in OT (60.5%, p < 0.001) and AT (42.9%, p = 0.006) vs. HC (9.8%), while non-albicans Candida species was dominant in HC. Analysis of oral mycobiota from OT patients showed the presence of 8 phyla, 222 genera, and 309 fungal species. Low alpha diversity (Shannon index, p = 0.006; Chao-1 biased corrected index, p = 0.01), varied beta diversity (Bray-Curtis, p = 0.01986; Jaccard, p = 0.02766; Weighted UniFrac, p = 0.00528), and increased relative abundance of C. albicans (p = 3.18E-02) was significantly associated with the oral mycobiota of OT vs. HC. This study supported that C. albicans is the main etiological agent in oral thrush and highlights the association of fungal biodiversity with the pathophysiology of oral thrush.
    Matched MeSH terms: Candida; Candida albicans
  10. Chew SY, Chee WJY, Than LTL
    J Biomed Sci, 2019 Jul 13;26(1):52.
    PMID: 31301737 DOI: 10.1186/s12929-019-0546-5
    BACKGROUND: Carbon utilization and metabolism are fundamental to every living organism for cellular growth. For intracellular human fungal pathogens such as Candida glabrata, an effective metabolic adaptation strategy is often required for survival and pathogenesis. As one of the host defence strategies to combat invading pathogens, phagocytes such as macrophages constantly impose restrictions on pathogens' access to their preferred carbon source, glucose. Surprisingly, it has been reported that engulfed C. glabrata are able to survive in this harsh microenvironment, further suggesting alternative carbon metabolism as a potential strategy for this opportunistic fungal pathogen to persist in the host.

    MAIN TEXT: In this review, we discuss alternative carbon metabolism as a metabolic adaptation strategy for the pathogenesis of C. glabrata. As the glyoxylate cycle is an important pathway in the utilization of alternative carbon sources, we also highlight the key metabolic enzymes in the glyoxylate cycle and its necessity for the pathogenesis of C. glabrata. Finally, we explore the transcriptional regulatory network of the glyoxylate cycle.

    CONCLUSION: Considering evidence from Candida albicans and Saccharomyces cerevisiae, this review summarizes the current knowledge of the glyoxylate cycle as an alternative carbon metabolic pathway of C. glabrata.

    Matched MeSH terms: Candida albicans/metabolism; Candida glabrata/metabolism*; Candida glabrata/pathogenicity*
  11. Lim SJ, Mohamad Ali MS, Sabri S, Muhd Noor ND, Salleh AB, Oslan SN
    Med Mycol, 2021 Dec 03;59(12):1127-1144.
    PMID: 34506621 DOI: 10.1093/mmy/myab053
    Candidiasis is a fungal infection caused by Candida spp. especially Candida albicans, C. glabrata, C. parapsilosis and C. tropicalis. Although the medicinal therapeutic strategies have rapidly improved, the mortality rate as candidiasis has continuously increased. The secreted and membrane-bound virulence factors (VFs) are responsible for fungal invasion, damage and translocation through the host enterocytes besides the evasion from host immune system. VFs such as agglutinin-like sequences (Als), heat shock protein 70, phospholipases, secreted aspartyl proteinases (Sap), lipases, enolases and phytases are mostly hydrolases which degrade or interact with the enterocyte membrane components. Candidalysin, however, acts as a peptide toxin to induce necrotic cell lysis. To date, structural studies of the VFs remain underexplored, hindering their functional analyses. Among the VFs, only Sap and Als have their structures deposited in Protein Data Bank (PDB). Therefore, this review scrutinizes the mechanisms of these VFs by discussing the VF-deficient studies of several Candida spp. and their abilities to produce these VFs. Nonetheless, their latest reported sequential and structural analyses are discussed to impart a wider perception of the host-pathogen interactions and potential vaccine or antifungal drug targets. This review signifies that more VFs structural investigations and mining in the emerging Candida spp. are required to decipher their pathogenicity and virulence mechanisms compared to the prominent C. albicans.

    LAY SUMMARY: Candida virulence factors (VFs) including mainly enzymes and proteins play vital roles in breaching the human intestinal barrier and causing deadly invasive candidiasis. Limited VFs' structural studies hinder deeper comprehension of their mechanisms and thus the design of vaccines and antifungal drugs against fungal infections.

    Matched MeSH terms: Candida*; Candida albicans
  12. Nordin MA, Wan Harun WH, Abdul Razak F, Musa MY
    Int J Oral Sci, 2014 Mar;6(1):15-21.
    PMID: 24406634 DOI: 10.1038/ijos.2013.97
    Candida species have been associated with the emergence of strains resistant to selected antifungal agents. Plant products have been used traditionally as alternative medicine to ease mucosal fungal infections. This study aimed to investigate the effects of Piper betle extract on the growth profile and the ultrastructure of commonly isolated oral candidal cells. The major component of P. betle was identified using liquid chromatography-mass spectrophotometry (LC-MS/MS). Seven ATCC control strains of Candida species were cultured in yeast peptone dextrose broth under four different growth environments: (i) in the absence of P. betle extract; and in the presence of P. betle extract at respective concentrations of (ii) 1 mg⋅mL(-1); (iii) 3 mg⋅mL(-1); and (iv) 6 mg⋅mL(-1). The growth inhibitory responses of the candidal cells were determined based on changes in the specific growth rates (µ). Scanning electron microscopy (SEM) was used to observe any ultrastructural alterations in the candida colonies. LC-MS/MS was performed to validate the presence of bioactive compounds in the extract. Following treatment, it was observed that the µ-values of the treated cells were significantly different than those of the untreated cells (P<0.05), indicating the fungistatic properties of the P. betle extract. The candidal population was also reduced from an average of 13.44×10(6) to 1.78×10(6) viable cell counts (CFU)⋅mL(-1). SEM examination exhibited physical damage and considerable morphological alterations of the treated cells. The compound profile from LC-MS/MS indicated the presence of hydroxybenzoic acid, chavibetol and hydroxychavicol in P. betle extract. The effects of P. betle on candida cells could potentiate its antifungal activity.
    Matched MeSH terms: Candida/drug effects*; Candida/growth & development; Candida/ultrastructure; Candida albicans/drug effects; Candida albicans/growth & development; Candida albicans/ultrastructure; Candida tropicalis/drug effects; Candida tropicalis/growth & development; Candida tropicalis/ultrastructure; Candida glabrata/drug effects; Candida glabrata/growth & development; Candida glabrata/ultrastructure
  13. Sharmeen Nellisa Soffian, Nurul Alia Risma Rismayuddin, Munirah Mokhtar, Mohd Hafiz Arzmi
    MyJurnal
    Introduction:Candida spp. are most common opportunistic pathogenic yeast that inhabit human oral cavity, epider-mis, gastrointestinal tract, and vagina leading to candidiasis. The transition of this yeast from commensal to potent pathogen is facilitated by numbers of virulence factors including biofilm formation. While most reports on candidi-asis are associated with formation Candida albicans biofilms, however, non-albicans Candida species prevalence is of growing concern. Recently, the use of probiotics as antifungal and antibiofilm has gained an increasing attention. As such, we aim to evaluate the inhibitory effect of monomicrobial and polymicrobial of Streptococcus salivariuson six strains of NAC namely Candida dubliniensis, Candida glabrata, Candida krusei, Candida lusitanaei, Candida parapsilosis and Candida tropicalis. Methods: Antifungal activity of S. salivarius on NAC species was performed using well diffusion method on Mueller Hinton Agar (MHA) and the diameter of inhibition zone were assessed. For formation of monomicrobial biofilm, standardized cell suspensions of NAC species (1 x 105 cells/ml) and probiotic Streptococcus salivarius (1 x 106 cells/ml) were grown in RPMI or nutrient broth media at 37°C for 72 h. Meanwhile to study polymicrobial biofilm of both NAC and S. salivarius, similar protocol was employed by inoculating both microorganisms with a similar cell density as in monomicrobial. Finally, biofilm formation was assessed through quantification of total biomass by crystal violet (CV) assay and the absorbance of adherent biofilm was measured in triplicate at 620nm. Results: Antifungal susceptibility testing of S. salivarius on all six NAC species discerned no zone of inhibition. Furthermore, our results showed variability of monomicrobial and polymicrobial biofilm biomass between NAC species and growth medium. All six polymicrobial NB-grown and RPMI-grown exhibited decreased of the biofilm formation. C. parapsilosis co-cultured with S. salivarius in NB medium had shown lowest biofilm bio-mass by 75.51+_1.34% while in RPMI medium, C. lusitanaei demonstrated with most reduced biofilm biomass by 67.03+_5.19. Conclusion: Our study elucidated the antagonistic relationship between Streptococcus salivarius and non-albicans Candida by supressing the growth of polymicrobial biofilm and pseudohyphae/hyphae of NAC species.
    Matched MeSH terms: Candida; Candida albicans; Candida tropicalis; Candida glabrata
  14. Santhanam J, Yahaya N, Aziz MN
    Med J Malaysia, 2013 Aug;68(4):343-7.
    PMID: 24145264
    Resistance to antifungal agents has increased in Candida spp., especially in non-albicans species. Recent findings reported a strikingly low susceptibility in Candida spp. towards itraconazole in Malaysia. In this study, a colorimetric broth dilution method was utilized to determine the susceptibility of Candida spp. isolated in Kuala Lumpur Hospital within a six month period. A total of 82 isolates from blood, peritoneal and other fluids were tested against 8 antifungal agents using the Sensititre Yeast One method. These comprised of 32 (39%) C. albicans, 17 (20.7%) C. glabrata, 15 (18.3%) C. tropicalis, 13 (15.9%) C. parapsilosis, two (2.4%) C. sake and 1 (1.2%) each of C. pelliculosa, C. rugosa and Pichia etchellsii/carsonii. Overall, susceptibility of all isolates to caspofungin was 98.8%, amphotericin B, 97.6%; 5-flucytosine, 97.6%; voriconazole, 97.6%; posaconazole, 87.8%; fluconazole, 82.9%; ketoconazole, 79.3%; and itraconazole, 56.1%. A total of 18 Candida spp. isolates (22 %) were resistant to at least one antifungal agent tested, and half of these were resistant to three or more antifungal agents. C. glabrata was the most frequently identified resistant species (10 isolates), followed by C. tropicalis (4 isolates), C. parapsilosis (3 isolates) and C. albicans (1 isolate). Resistance was highest against ketoconazole (20.9%), followed by itraconazole (13.4%). However, 30.5% of isolates were susceptible-dose dependent towards itraconazole. Long-term usage of itraconazole in Malaysia and a predominance of nonalbicans species may account for the results observed in this study. In conclusion, susceptibility to antifungal drugs is species-dependent among Candida spp.; reduced susceptibility to itraconazole is concomitant with the high number of non-albicans Candida species isolated in Malaysia.
    Matched MeSH terms: Candida*; Candidiasis
  15. Lum KY, Tay ST, Le CF, Lee VS, Sabri NH, Velayuthan RD, et al.
    Sci Rep, 2015;5:9657.
    PMID: 25965506 DOI: 10.1038/srep09657
    Candida spp. are the most common causes of fungal infections worldwide. Among the Candida species, Candida albicans remains the predominant species that causes invasive candidiasis in most countries. In this study, we used two peptides, KABT-AMP and uperin 3.6 as templates to develop novel antifungal peptides. Their anticandidal activity was assessed using a combination of MIC, time-killing assay and biofilm reduction assay. Hybrid peptides, KU2 and KU3 containing a mixed backbone of KABT-AMP and Uperin 3.6 demonstrated the most potent anticandidal activity with MIC values ranging from 8-16 mg/L. The number of Trp residues and the amphipathic structure of peptides probably enhanced the anticandidal activity of peptides. Increasing the cationicity of the uperin 3.6 analogues resulted in reduced MIC from the range of 64-128 mg/L to 16-64 mg/L and this was also correlated with the antibiofilm activity and killing kinetics of the peptides. Peptides showed synergistic effects when used in combination with conventional antifungals. Peptides demonstrated low haemolytic activity but significant toxicity on two normal human epithelial cell lines. This study provides us with a better understanding on the structure-activity relationship and the balance between cationicity and hydrophobicity of the peptides although the therapeutic application of the peptides is limited.
    Matched MeSH terms: Candida albicans/growth & development*
  16. Basri M, Th'ng BL, Razak CN, Salleh AB
    Ann N Y Acad Sci, 1998 Dec 13;864:192-7.
    PMID: 9928091
    Matched MeSH terms: Candida/enzymology*
  17. Meylani V, Sembiring L, Fudholi A, Wibawa T
    Microb Pathog, 2021 Sep;158:105075.
    PMID: 34224845 DOI: 10.1016/j.micpath.2021.105075
    Gene expression of SAP 4-6 based on the detection of mRNA was observed in Candida albicans isolates from HIV-positive patients with oral candidiasis and commensal from healthy individuals. The species of C. albicans strains were selectively isolated from both sources using CHROMagar Chromogenic Media. The obtained isolates were then induced to express SAP 4-6 using SAP 4-6 gene inducer media. Analysis of gene expression was performed on a molecular basis using the RT-PCR method. Molecular analysis of gene expression showed that the isolates CH3 from HIV-positive patients with oral candidiasis could express SAP 4-6 gene, while commensal isolates from healthy people could not. Based on the results of this study, it could be concluded that, in terms of molecular detection, only isolates from HIV-positive patients (CH3) could express their SAP 4-6 gene.
    Matched MeSH terms: Candida albicans/genetics
  18. Navarathinam SD, Neoh HM, Tan TL, Wahab AA, Mohd Nizam Tzar MN, Ding CH
    Malays J Pathol, 2023 Dec;45(3):417-424.
    PMID: 38155383
    BACKGROUND: Candida tropicalis is a globally distributed yeast that has been popping up in the medical literature lately, albeit for unenviable reasons. C. tropicalis is associated with substantial morbidity, mortality as well as drug resistance. The aims of this study were to ascertain the antifungal susceptibility profile and the biofilm-producing capability of this notorious yeast in our centre.

    METHODS: C. tropicalis isolates from sterile specimens were collected over a 12-month period. Conclusive identification was achieved biochemically with the ID 32 C kit. Susceptibility to nine antifungal agents was carried out using the colourimetric broth microdilution kit Sensititre YeastOne YO10. Biofilm-producing capability was evaluated by quantifying biomass formation spectrophotometrically following staining with crystal violet.

    RESULTS: Twenty-four non-repetitive isolates of C. tropicalis were collected. The resistance rates to the triazole agents were 29.2% for fluconazole, 16.7% for itraconazole, 20.8% for voriconazole and 8.3% for posaconazole-the pan-azole resistance rate was identical to that of posaconazole. No resistance was recorded for amphotericin B, flucysosine or any of the echinocandins tested. A total of 16/24 (66.7%) isolates were categorized as high biomass producers and 8/24 (33.3%) were moderate biomass producers. None of our isolates were low biomass producers.

    CONCLUSION: The C. tropicalis isolates from our centre were resistant only to triazole agents, with the highest resistance rate being recorded for fluconazole and the lowest for posaconazole. While this is not by itself alarming, the fact that our isolates were prolific biofilm producers means that even azole-susceptible isolates can be paradoxically refractory to antifungal therapy.

    Matched MeSH terms: Candida; Candida tropicalis
  19. de Jong AW, Dieleman C, Carbia M, Mohd Tap R, Hagen F
    J Clin Microbiol, 2021 03 19;59(4).
    PMID: 33536293 DOI: 10.1128/JCM.03220-20
    Non-albicans Candida species are emerging in the nosocomial environment, with the multidrug-resistant (MDR) species Candida auris being the most notorious example. Consequently, rapid and accurate species identification has become essential. The objective of this study was to evaluate five commercially available chromogenic media for the presumptive identification of C. auris Two novel chromogenic formulations, CHROMagar Candida Plus (CHROMagar) and HiCrome C. auris MDR selective agar (HiMedia), and three reference media, CandiSelect (Bio-Rad), CHROMagar Candida (CHROMagar), and Chromatic Candida (Liofilchem), were inoculated with a collection of 9 genetically diverse C. auris strains and 35 strains from closely related comparator species. After 48 h of incubation, the media were evaluated for their ability to detect and identify C. auris All media had the same limitations in the differentiation of the more common species Candida dubliniensis and Candida glabrata Only on CHROMagar Candida Plus did C. auris colonies develop a species-specific coloration. Nevertheless, the closely related pathogenic species Candida pseudohaemulonii and Candida vulturna developed a similar appearance as C. auris on this medium. CHROMagar Candida Plus was shown to be superior in the detection and identification of C. auris, with 100% inclusivity for C. auris compared to 0% and 33% for the reference media and HiCrome C. auris MDR selective agar, respectively. Although C. vulturna and C. pseudohaemulonii can cause false positives, CHROMagar Candida Plus was shown to be a valuable addition to the plethora of mostly molecular methods for C. auris detection and identification.
    Matched MeSH terms: Candida*
  20. Wang H, Xu YC, Hsueh PR
    Future Microbiol, 2016 10;11:1461-1477.
    PMID: 27750452
    In the Asia-Pacific region, Candida albicans is the predominant Candida species causing invasive candidiasis/candidemia in Australia, Japan, Korea, Hong Kong, Malaysia, Singapore and Thailand whereas C. tropicalis is the most frequently encountered Candida species in Pakistan and India. Invasive isolates of C. albicans, C. parapsilosis complex and C. tropicalis remain highly susceptible to fluconazole (>90% susceptible). Fluconazole resistance (6.8-15%), isolates with the non-wild-type phenotype for itraconazole susceptibility (3.9-10%) and voriconazole (5-17.8%), and echinocandin resistance (2.1-2.2% in anidulafungin and 2.2% in micafungin) among invasive C. glabrata complex isolates are increasing in prevalence. Moreover, not all isolates of C. tropicalis have been shown to be susceptible to fluconazole (nonsusceptible rate, 5.7-11.6% in China) or voriconazole (nonsusceptible rate, 5.7-9.6% in China).
    Matched MeSH terms: Candida/drug effects*; Candida/isolation & purification; Candida/pathogenicity*; Candida albicans/drug effects; Candida albicans/pathogenicity; Candida tropicalis/drug effects; Candida tropicalis/isolation & purification; Candida tropicalis/pathogenicity; Candida glabrata/drug effects; Candida glabrata/isolation & purification; Candida glabrata/pathogenicity
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links