Displaying all 8 publications

Abstract:
Sort:
  1. Kakar SK, Ali J, Wang J, Wu X, Arshed N, Le Hien TT, et al.
    J Environ Manage, 2024 Nov;370:122970.
    PMID: 39426172 DOI: 10.1016/j.jenvman.2024.122970
    PURPOSE: The purpose of this study is to investigate how industrialization, financial development, electricity consumption, trade openness, and green FinTech affect on carbon emissions asymmetrically in Asian countries.

    DESIGN: Method/Approach: The study examined 29 years of panel data from 39 Asian countries from 1995 to 2022, sourced from World Development Indicators (WDI) and the International Monetary Fund (IMF). The study constructs a green financial technology index using principal component analysis (PCA). The study utilizes an Asymmetric Panel Quantile Autoregressive Distributive Lag (A-QARDL) model with pooled mean group (PMG) specifications to explore effects that exhibit cross-sectional homogeneous in the long-run, but heterogeneous in the short-run effects.

    FINDINGS: Industrialization and financial development have a strongly asymmetric impact on carbon emissions. Industrialization causes an increase in carbon emissions at various quantiles, while green FinTech plays a crucial role in mitigating these carbon emissions. Trade openness and domestic credit to the private sector also help reduce carbon emissions.

    RESEARCH LIMITATIONS AND IMPLICATIONS: The study emphasizes the significance of employing green FinTech techniques and using renewable energy sources to meet sustainable industrialization and sustainability goals in Asian countries. The policy consequences include promoting environmentally friendly industrial practices, encouraging green financial investments, and boosting government financing for private sector research and development to mitigate carbon emissions.

    ORIGINALITY/VALUE: The study employs robust modeling to analyze the role of green FinTech to enhance industrial sustainability. Both Industrialization and deindustrialization have an impact on economic emissions, and the potential of green FinTech's to promote sustainability contributes to the environment protection strategy.

  2. Kakar SK, Wang J, Arshed N, Le Hien TT, Abdullahi NM
    Heliyon, 2024 Dec 15;10(23):e40683.
    PMID: 39687159 DOI: 10.1016/j.heliyon.2024.e40683
    Human activities, primarily economic growth, and technological innovation, threaten global biodiversity. This study utilizes 22-year panel data from 87 developing countries and a novel cross-sectional heterogeneous factor analysis-based financial technology index to investigate how economic growth, renewable energy consumption, technological innovation, natural resources, and financial technology affect biodiversity. To account for cross-sectional dependency, this study employed a Panel Autoregressive Distributive Lagged with Pooled Mean Group specifications within the Driscoll and Kraay standard error estimator. The findings revealed that the log of Gross Domestic Product (GDP) had an inverted U-shaped effect. Moreover, economic growth, renewable energy, and FinTech can improve biodiversity conservation. Traditionally, technological innovation and unregulated resource exploitation have posed threats to biodiversity. This study focused on responsible economic development and practical solutions to biodiversity threats posed by technological innovation and unrestrained resource use. FinTech can promote sustainable behaviors and divert funds from ecosystem-harming projects to biodiversity-friendly ones. Innovative financial instruments enable stakeholders to balance nature. This study demonstrates that FinTech, renewable energy, and responsible economic growth can help reverse biodiversity loss. We provide the policy implications of our research.
  3. Geoghegan JL, Tan le V, Kühnert D, Halpin RA, Lin X, Simenauer A, et al.
    J Virol, 2015 Sep;89(17):8871-9.
    PMID: 26085170 DOI: 10.1128/JVI.00706-15
    Enterovirus A71 (EV-A71) is a major cause of hand, foot, and mouth disease (HFMD) and is particularly prevalent in parts of Southeast Asia, affecting thousands of children and infants each year. Revealing the evolutionary and epidemiological dynamics of EV-A71 through time and space is central to understanding its outbreak potential. We generated the full genome sequences of 200 EV-A71 strains sampled from various locations in Viet Nam between 2011 and 2013 and used these sequence data to determine the evolutionary history and phylodynamics of EV-A71 in Viet Nam, providing estimates of the effective reproduction number (Re) of the infection through time. In addition, we described the phylogeography of EV-A71 throughout Southeast Asia, documenting patterns of viral gene flow. Accordingly, our analysis reveals that a rapid genogroup switch from C4 to B5 likely took place during 2012 in Viet Nam. We show that the Re of subgenogroup C4 decreased during the time frame of sampling, whereas that of B5 increased and remained >1 at the end of 2013, corresponding to a rise in B5 prevalence. Our study reveals that the subgenogroup B5 virus that emerged into Viet Nam is closely related to variants that were responsible for large epidemics in Malaysia and Taiwan and therefore extends our knowledge regarding its associated area of endemicity. Subgenogroup B5 evidently has the potential to cause more widespread outbreaks across Southeast Asia.

    IMPORTANCE: EV-A71 is one of many viruses that cause HFMD, a common syndrome that largely affects infants and children. HFMD usually causes only mild illness with no long-term consequences. Occasionally, however, severe infection may arise, especially in very young children, causing neurological complications and even death. EV-A71 is highly contagious and is associated with the most severe HFMD cases, with large and frequent epidemics of the virus recorded worldwide. Although major advances have been made in the development of a potential EV-A71 vaccine, there is no current prevention and little is known about the patterns and dynamics of EV-A71 spread. In this study, we utilize full-length genome sequence data obtained from HFMD patients in Viet Nam, a geographical region where the disease has been endemic since 2003, to characterize the phylodynamics of this important emerging virus.

  4. Commons RJ, Simpson JA, Thriemer K, Abreha T, Adam I, Anstey NM, et al.
    PLoS Med, 2019 Oct;16(10):e1002928.
    PMID: 31584960 DOI: 10.1371/journal.pmed.1002928
    BACKGROUND: Artemisinin-based combination therapy (ACT) is recommended for uncomplicated Plasmodium vivax malaria in areas of emerging chloroquine resistance. We undertook a systematic review and individual patient data meta-analysis to compare the efficacies of dihydroartemisinin-piperaquine (DP) and artemether-lumefantrine (AL) with or without primaquine (PQ) on the risk of recurrent P. vivax.

    METHODS AND FINDINGS: Clinical efficacy studies of uncomplicated P. vivax treated with DP or AL and published between January 1, 2000, and January 31, 2018, were identified by conducting a systematic review registered with the International Prospective Register of Systematic Reviews (PROSPERO): CRD42016053310. Investigators of eligible studies were invited to contribute individual patient data that were pooled using standardised methodology. The effect of mg/kg dose of piperaquine/lumefantrine, ACT administered, and PQ on the rate of P. vivax recurrence between days 7 and 42 after starting treatment were investigated by Cox regression analyses according to an a priori analysis plan. Secondary outcomes were the risk of recurrence assessed on days 28 and 63. Nineteen studies enrolling 2,017 patients were included in the analysis. The risk of recurrent P. vivax at day 42 was significantly higher in the 384 patients treated with AL alone (44.0%, 95% confidence interval [CI] 38.7-49.8) compared with the 812 patients treated with DP alone (9.3%, 95% CI 7.1-12.2): adjusted hazard ratio (AHR) 12.63 (95% CI 6.40-24.92), p < 0.001. The rates of recurrence assessed at days 42 and 63 were associated inversely with the dose of piperaquine: AHRs (95% CI) for every 5-mg/kg increase 0.63 (0.48-0.84), p = 0.0013 and 0.83 (0.73-0.94), p = 0.0033, respectively. The dose of lumefantrine was not significantly associated with the rate of recurrence (1.07 for every 5-mg/kg increase, 95% CI 0.99-1.16, p = 0.0869). In a post hoc analysis, in patients with symptomatic recurrence after AL, the mean haemoglobin increased 0.13 g/dL (95% CI 0.01-0.26) for every 5 days that recurrence was delayed, p = 0.0407. Coadministration of PQ reduced substantially the rate of recurrence assessed at day 42 after AL (AHR = 0.20, 95% CI 0.10-0.41, p < 0.001) and at day 63 after DP (AHR = 0.08, 95% CI 0.01-0.70, p = 0.0233). Results were limited by follow-up of patients to 63 days or less and nonrandomised treatment groups.

    CONCLUSIONS: In this study, we observed the risk of P. vivax recurrence at day 42 to be significantly lower following treatment with DP compared with AL, reflecting the longer period of post-treatment prophylaxis; this risk was reduced substantially by coadministration with PQ. We found that delaying P. vivax recurrence was associated with a small but significant improvement in haemoglobin. These results highlight the benefits of PQ radical cure and also the provision of blood-stage antimalarial agents with prolonged post-treatment prophylaxis.

  5. Pearson RD, Amato R, Auburn S, Miotto O, Almagro-Garcia J, Amaratunga C, et al.
    Nat Genet, 2016 Aug;48(8):959-964.
    PMID: 27348299 DOI: 10.1038/ng.3599
    The widespread distribution and relapsing nature of Plasmodium vivax infection present major challenges for the elimination of malaria. To characterize the genetic diversity of this parasite in individual infections and across the population, we performed deep genome sequencing of >200 clinical samples collected across the Asia-Pacific region and analyzed data on >300,000 SNPs and nine regions of the genome with large copy number variations. Individual infections showed complex patterns of genetic structure, with variation not only in the number of dominant clones but also in their level of relatedness and inbreeding. At the population level, we observed strong signals of recent evolutionary selection both in known drug resistance genes and at new loci, and these varied markedly between geographical locations. These findings demonstrate a dynamic landscape of local evolutionary adaptation in the parasite population and provide a foundation for genomic surveillance to guide effective strategies for control and elimination of P. vivax.
  6. Commons RJ, Simpson JA, Thriemer K, Chu CS, Douglas NM, Abreha T, et al.
    BMC Med, 2019 08 01;17(1):151.
    PMID: 31366382 DOI: 10.1186/s12916-019-1386-6
    BACKGROUND: Malaria causes a reduction in haemoglobin that is compounded by primaquine, particularly in patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency. The aim of this study was to determine the relative contributions to red cell loss of malaria and primaquine in patients with uncomplicated Plasmodium vivax.

    METHODS: A systematic review identified P. vivax efficacy studies of chloroquine with or without primaquine published between January 2000 and March 2017. Individual patient data were pooled using standardised methodology, and the haematological response versus time was quantified using a multivariable linear mixed effects model with non-linear terms for time. Mean differences in haemoglobin between treatment groups at day of nadir and day 42 were estimated from this model.

    RESULTS: In total, 3421 patients from 29 studies were included: 1692 (49.5%) with normal G6PD status, 1701 (49.7%) with unknown status and 28 (0.8%) deficient or borderline individuals. Of 1975 patients treated with chloroquine alone, the mean haemoglobin fell from 12.22 g/dL [95% CI 11.93, 12.50] on day 0 to a nadir of 11.64 g/dL [11.36, 11.93] on day 2, before rising to 12.88 g/dL [12.60, 13.17] on day 42. In comparison to chloroquine alone, the mean haemoglobin in 1446 patients treated with chloroquine plus primaquine was - 0.13 g/dL [- 0.27, 0.01] lower at day of nadir (p = 0.072), but 0.49 g/dL [0.28, 0.69] higher by day 42 (p  25% to  5 g/dL.

    CONCLUSIONS: Primaquine has the potential to reduce malaria-related anaemia at day 42 and beyond by preventing recurrent parasitaemia. Its widespread implementation will require accurate diagnosis of G6PD deficiency to reduce the risk of drug-induced haemolysis in vulnerable individuals.

    TRIAL REGISTRATION: This trial was registered with PROSPERO: CRD42016053312. The date of the first registration was 23 December 2016.

  7. MalariaGEN, Adam I, Alam MS, Alemu S, Amaratunga C, Amato R, et al.
    Wellcome Open Res, 2022;7:136.
    PMID: 35651694 DOI: 10.12688/wellcomeopenres.17795.1
    This report describes the MalariaGEN Pv4 dataset, a new release of curated genome variation data on 1,895 samples of Plasmodium vivax collected at 88 worldwide locations between 2001 and 2017. It includes 1,370 new samples contributed by MalariaGEN and VivaxGEN partner studies in addition to previously published samples from these and other sources. We provide genotype calls at over 4.5 million variable positions including over 3 million single nucleotide polymorphisms (SNPs), as well as short indels and tandem duplications. This enlarged dataset highlights major compartments of parasite population structure, with clear differentiation between Africa, Latin America, Oceania, Western Asia and different parts of Southeast Asia. Each sample has been classified for drug resistance to sulfadoxine, pyrimethamine and mefloquine based on known markers at the dhfr, dhps and mdr1 loci. The prevalence of all of these resistance markers was much higher in Southeast Asia and Oceania than elsewhere. This open resource of analysis-ready genome variation data from the MalariaGEN and VivaxGEN networks is driven by our collective goal to advance research into the complex biology of P. vivax and to accelerate genomic surveillance for malaria control and elimination.
  8. Trimarsanto H, Amato R, Pearson RD, Sutanto E, Noviyanti R, Trianty L, et al.
    Commun Biol, 2022 Dec 23;5(1):1411.
    PMID: 36564617 DOI: 10.1038/s42003-022-04352-2
    Traditionally, patient travel history has been used to distinguish imported from autochthonous malaria cases, but the dormant liver stages of Plasmodium vivax confound this approach. Molecular tools offer an alternative method to identify, and map imported cases. Using machine learning approaches incorporating hierarchical fixation index and decision tree analyses applied to 799 P. vivax genomes from 21 countries, we identified 33-SNP, 50-SNP and 55-SNP barcodes (GEO33, GEO50 and GEO55), with high capacity to predict the infection's country of origin. The Matthews correlation coefficient (MCC) for an existing, commonly applied 38-SNP barcode (BR38) exceeded 0.80 in 62% countries. The GEO panels outperformed BR38, with median MCCs > 0.80 in 90% countries at GEO33, and 95% at GEO50 and GEO55. An online, open-access, likelihood-based classifier framework was established to support data analysis (vivaxGEN-geo). The SNP selection and classifier methods can be readily amended for other use cases to support malaria control programs.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links